Machine and Deep Learning: Artificial Intelligence Application in Biotic and Abiotic Stress Management in Plants

被引:6
|
作者
Gou, Caiming [1 ]
Zafar, Sara [2 ]
Fatima [3 ]
Hasnain, Zuhair [4 ]
Aslam, Nazia [2 ]
Iqbal, Naeem [2 ]
Abbas, Sammar [5 ]
Li, Hui [6 ]
Li, Jia [1 ]
Chen, Bo [1 ]
Ragauskas, Arthur J. [7 ,8 ,9 ]
Abbas, Manzar [1 ]
机构
[1] Yibin Univ, Sch Agr Forestry & Food Engn, Yibin 644000, Sichuan, Peoples R China
[2] Govt Coll Univ, Bot Dept, Faisalabad 38000, Punjab, Pakistan
[3] Univ Karachi, Dept Math, Karachi 75270, Sindh, Pakistan
[4] PMAS Arid Agr Univ, Rawalpindi 44000, Punjab, Pakistan
[5] Beijing Forestry Univ, Coll Biol Sci & Biotechnol, Beijing 100091, Peoples R China
[6] Inner Mongolia Agr Univ, Coll Forestry, Hohhot 010019, Peoples R China
[7] Univ Tennessee, Dept Forestry Wildlife & Fisheries, Ctr Renewable Carbon, Inst Agr, Knoxville, TN 37996 USA
[8] Oak Ridge Natl Lab, Joint Inst Biol Sci, Biosci Div, Oak Ridge, TN 37831 USA
[9] Univ Tennessee Knoxville, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA
来源
FRONTIERS IN BIOSCIENCE-LANDMARK | 2024年 / 29卷 / 01期
关键词
biotic and abiotic stresses; satellite; unmanned aerial vehicle; smart-phones; artificial intelligence; machine learning; deep; learning; plant phenotyping; ARABIDOPSIS-THALIANA; THERMAL IMAGERY; NEURAL-NETWORK; ROOT; GROWTH; YIELD; WHEAT; SPECTROSCOPY; FLUORESCENCE; ARCHITECTURE;
D O I
10.31083/j.fbl2901020
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Biotic and abiotic stresses significantly affect plant fitness, resulting in a serious loss in food production. Biotic and abiotic stresses predominantly affect metabolite biosynthesis, gene and protein expression, and genome variations. However, light doses of stress result in the production of positive attributes in crops, like tolerance to stress and biosynthesis of metabolites, called hormesis. Advancement in artificial intelligence (AI) has enabled the development of high-throughput gadgets such as high-resolution imagery sensors and robotic aerial vehicles, i.e., satellites and unmanned aerial vehicles (UAV), to overcome biotic and abiotic stresses. These High throughput (HTP) gadgets produce accurate but big amounts of data. Significant datasets such as transportable array for remotely sensed agriculture and phenotyping reference platform (TERRA-REF) have been developed to forecast abiotic stresses and early detection of biotic stresses. For accurately measuring the model plant stress, tools like Deep Learning (DL) and Machine Learning (ML) have enabled early detection of desirable traits in a large population of breeding material and mitigate plant stresses. In this review, advanced applications of ML and DL in plant biotic and abiotic stress management have been summarized.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Policy Implications of Artificial Intelligence and Machine Learning in Diabetes Management
    Broome, David T.
    Hilton, C. Beau
    Mehta, Neil
    CURRENT DIABETES REPORTS, 2020, 20 (02)
  • [22] Policy Implications of Artificial Intelligence and Machine Learning in Diabetes Management
    David T. Broome
    C. Beau Hilton
    Neil Mehta
    Current Diabetes Reports, 2020, 20
  • [23] Artificial intelligence and machine learning
    Hahn, Peter
    HANDCHIRURGIE MIKROCHIRURGIE PLASTISCHE CHIRURGIE, 2019, 51 (01) : 62 - 67
  • [24] Exploring the Application of Artificial Intelligence and Machine Learning in GLAM Collections
    Kim, Jeonghyun
    Chen, Haihua
    Yang, Le
    Simic, Julia
    Proceedings of the Association for Information Science and Technology, 2024, 61 (01) : 782 - 785
  • [25] Artificial intelligence, machine learning, and deep learning in liver transplantation
    Bhat, Mamatha
    Rabindranath, Madhumitha
    Chara, Beatriz Sordi
    Simonetto, Douglas A.
    JOURNAL OF HEPATOLOGY, 2023, 78 (06) : 1216 - 1233
  • [26] Applications of Artificial Intelligence, Machine Learning, and Deep Learning in Nutrition: A Systematic Review
    Armand, Tagne Poupi Theodore
    Nfor, Kintoh Allen
    Kim, Jung-In
    Kim, Hee-Cheol
    NUTRIENTS, 2024, 16 (07)
  • [27] Applied machine learning and artificial intelligence in rheumatology
    Hugle, Maria
    Omoumi, Patrick
    van Laar, Jacob M.
    Boedecker, Joschka
    Hugle, Thomas
    RHEUMATOLOGY ADVANCES IN PRACTICE, 2020, 4 (01)
  • [28] The Evolution of Artificial Intelligence in Medical Imaging: From Computer Science to Machine and Deep Learning
    Avanzo, Michele
    Stancanello, Joseph
    Pirrone, Giovanni
    Drigo, Annalisa
    Retico, Alessandra
    CANCERS, 2024, 16 (21)
  • [29] Artificial intelligence and machine learning
    Niklas Kühl
    Max Schemmer
    Marc Goutier
    Gerhard Satzger
    Electronic Markets, 2022, 32 : 2235 - 2244
  • [30] The artificial intelligence renaissance: deep learning and the road to human-Level machine intelligence
    Tan, Kar-Han
    Lim, Boon Pang
    APSIPA TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING, 2018, 7