Machine and Deep Learning: Artificial Intelligence Application in Biotic and Abiotic Stress Management in Plants

被引:5
|
作者
Gou, Caiming [1 ]
Zafar, Sara [2 ]
Fatima [3 ]
Hasnain, Zuhair [4 ]
Aslam, Nazia [2 ]
Iqbal, Naeem [2 ]
Abbas, Sammar [5 ]
Li, Hui [6 ]
Li, Jia [1 ]
Chen, Bo [1 ]
Ragauskas, Arthur J. [7 ,8 ,9 ]
Abbas, Manzar [1 ]
机构
[1] Yibin Univ, Sch Agr Forestry & Food Engn, Yibin 644000, Sichuan, Peoples R China
[2] Govt Coll Univ, Bot Dept, Faisalabad 38000, Punjab, Pakistan
[3] Univ Karachi, Dept Math, Karachi 75270, Sindh, Pakistan
[4] PMAS Arid Agr Univ, Rawalpindi 44000, Punjab, Pakistan
[5] Beijing Forestry Univ, Coll Biol Sci & Biotechnol, Beijing 100091, Peoples R China
[6] Inner Mongolia Agr Univ, Coll Forestry, Hohhot 010019, Peoples R China
[7] Univ Tennessee, Dept Forestry Wildlife & Fisheries, Ctr Renewable Carbon, Inst Agr, Knoxville, TN 37996 USA
[8] Oak Ridge Natl Lab, Joint Inst Biol Sci, Biosci Div, Oak Ridge, TN 37831 USA
[9] Univ Tennessee Knoxville, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA
来源
FRONTIERS IN BIOSCIENCE-LANDMARK | 2024年 / 29卷 / 01期
关键词
biotic and abiotic stresses; satellite; unmanned aerial vehicle; smart-phones; artificial intelligence; machine learning; deep; learning; plant phenotyping; ARABIDOPSIS-THALIANA; THERMAL IMAGERY; NEURAL-NETWORK; ROOT; GROWTH; YIELD; WHEAT; SPECTROSCOPY; FLUORESCENCE; ARCHITECTURE;
D O I
10.31083/j.fbl2901020
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Biotic and abiotic stresses significantly affect plant fitness, resulting in a serious loss in food production. Biotic and abiotic stresses predominantly affect metabolite biosynthesis, gene and protein expression, and genome variations. However, light doses of stress result in the production of positive attributes in crops, like tolerance to stress and biosynthesis of metabolites, called hormesis. Advancement in artificial intelligence (AI) has enabled the development of high-throughput gadgets such as high-resolution imagery sensors and robotic aerial vehicles, i.e., satellites and unmanned aerial vehicles (UAV), to overcome biotic and abiotic stresses. These High throughput (HTP) gadgets produce accurate but big amounts of data. Significant datasets such as transportable array for remotely sensed agriculture and phenotyping reference platform (TERRA-REF) have been developed to forecast abiotic stresses and early detection of biotic stresses. For accurately measuring the model plant stress, tools like Deep Learning (DL) and Machine Learning (ML) have enabled early detection of desirable traits in a large population of breeding material and mitigate plant stresses. In this review, advanced applications of ML and DL in plant biotic and abiotic stress management have been summarized.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Artificial intelligence, machine learning, and deep learning in rhinology: a systematic review
    Antonio Mario Bulfamante
    Francesco Ferella
    Austin Michael Miller
    Cecilia Rosso
    Carlotta Pipolo
    Emanuela Fuccillo
    Giovanni Felisati
    Alberto Maria Saibene
    European Archives of Oto-Rhino-Laryngology, 2023, 280 : 529 - 542
  • [22] Application of artificial intelligence and machine learning for BIM: review
    Bassir D.
    Lodge H.
    Chang H.
    Majak J.
    Chen G.
    International Journal for Simulation and Multidisciplinary Design Optimization, 2023, 14
  • [23] Artificial intelligence, machine learning, and deep learning in rhinology: a systematic review
    Bulfamante, Antonio Mario
    Ferella, Francesco
    Miller, Austin Michael
    Rosso, Cecilia
    Pipolo, Carlotta
    Fuccillo, Emanuela
    Felisati, Giovanni
    Saibene, Alberto Maria
    EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2023, 280 (02) : 529 - 542
  • [24] Artificial intelligence, machine learning and deep learning in advanced robotics, a review
    Soori M.
    Arezoo B.
    Dastres R.
    Cognitive Robotics, 2023, 3 : 54 - 70
  • [25] GeoAI: Integration of Artificial Intelligence, Machine Learning, and Deep Learning with GIS
    Choi, Yosoon
    APPLIED SCIENCES-BASEL, 2023, 13 (06):
  • [26] Artificial Intelligence in Optical Communications: From Machine Learning to Deep Learning
    Wang, Danshi
    Zhang, Min
    FRONTIERS IN COMMUNICATIONS AND NETWORKS, 2021, 2
  • [27] Special Issue on Artificial Intelligence, Machine Learning, and Deep Learning in Aerospace
    Rajpathak, Dnyanesh
    Roboff, Mark
    Yu, Huafeng
    Biswas, Gautam
    SAE INTERNATIONAL JOURNAL OF AEROSPACE, 2022, 15 (02): : 123 - 125
  • [28] The Application of Artificial Intelligence and Machine Learning in Pituitary Adenomas
    Dai, Congxin
    Sun, Bowen
    Wang, Renzhi
    Kang, Jun
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [29] Artificial Intelligence and Machine Learning in Energy Conversion and Management
    Mira, Konstantinos
    Bugiotti, Francesca
    Morosuk, Tatiana
    ENERGIES, 2023, 16 (23)
  • [30] Decoding the physiological response of plants to stress using deep learning for forecasting crop loss due to abiotic, biotic, and climatic variables
    Kumar, Mridul
    Saifi, Zeeshan
    Krishnananda, Soami Daya
    SCIENTIFIC REPORTS, 2023, 13 (01)