A weighted one-level density of families of L-functions

被引:2
|
作者
Fazzari, Alessandro [1 ,2 ]
机构
[1] Univ Genoa, Dipartimento Matemat, Genoa, Italy
[2] Charles Univ Prague, Dept Algebra, Prague, Czech Republic
关键词
L-functions; One-level density; Low-lying zeros; LOW-LYING ZEROS; LINEAR STATISTICS; MODULAR-FORMS; MOMENTS; RATIOS; VALUES;
D O I
10.2140/ant.2024.18.87
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to a weighted version of the one-level density of the nontrivial zeros of L-functions, tilted by a power of the L-function evaluated at the central point. Assuming the Riemann hypothesis and the ratio conjecture, for some specific families of L-functions, we prove that the same structure suggested by the density conjecture also holds in this weighted investigation, if the exponent of the weight is small enough. Moreover, we speculate about the general case, conjecturing explicit formulae for the weighted kernels.
引用
收藏
页码:87 / 132
页数:48
相关论文
共 50 条
  • [31] n-Level Densities of Artin L-Functions
    Cho, Peter J.
    Kim, Henry H.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (17) : 7861 - 7883
  • [32] SATO-TATE EQUIDISTRIBUTION OF CERTAIN FAMILIES OF ARTIN L-FUNCTIONS
    Shankar, Arul
    Sodergren, Anders
    Templier, Nicolas
    FORUM OF MATHEMATICS SIGMA, 2019, 7
  • [33] L-functions associated with families of tone exponential sums
    Haessig, C. Douglas
    Sperber, Steven
    JOURNAL OF NUMBER THEORY, 2014, 144 : 422 - 473
  • [34] Omega results for cubic field counts via lower-order terms in the one-level density
    Cho, Peter J.
    Fiorilli, Daniel
    Lee, Yoonbok
    Sodergren, Anders
    FORUM OF MATHEMATICS SIGMA, 2022, 10
  • [35] n-level densities for twisted cubic Dirichlet L-functions
    Cho, Peter J.
    Park, Jeongho
    JOURNAL OF NUMBER THEORY, 2019, 196 : 139 - 155
  • [36] Moments of generalized quadratic Gauss sums weighted by L-functions
    Zhang, WP
    JOURNAL OF NUMBER THEORY, 2002, 92 (02) : 304 - 314
  • [37] A random matrix model for elliptic curve L-functions of finite conductor
    Duenez, E.
    Huynh, D. K.
    Keating, J. P.
    Miller, S. J.
    Snaith, N. C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (11)
  • [38] Non-vanishing of automorphic L-functions of prime power level
    Balkanova, Olga
    Frolenkov, Dmitry
    MONATSHEFTE FUR MATHEMATIK, 2018, 185 (01): : 17 - 41
  • [39] The n-level densities of low-lying zeros of quadratic Dirichlet L-functions
    Levinson, Jake
    Miller, Steven J.
    ACTA ARITHMETICA, 2013, 161 (02) : 145 - 182
  • [40] Small zeros of Dirichlet L-functions of quadratic characters of prime modulus
    Andrade, Julio
    Baluyot, Siegfred
    RESEARCH IN NUMBER THEORY, 2020, 6 (02)