Generalized network-based dimensionality analysis

被引:2
作者
Kosztyan, Zsolt T. [1 ]
Katona, Attila I. [1 ]
Kurbucz, Marcell T. [2 ,3 ]
Lantos, Zoltan [4 ]
机构
[1] Univ Pannonia, Dept Quantitat Methods, Egyet Str 10, H-8200 Veszprem, Hungary
[2] Wigner Res Ctr Phys, Dept Computat Sci, 29-33 Konkoly Thege Miklos St, H-1121 Budapest, Hungary
[3] Corvinus Univ Budapest, Inst Data Analyt & Informat Syst, Fovam Sq 8, H-1093 Budapest, Hungary
[4] Semmelweis Univ, Fac Hlth Sci, Dept Virtual Hlth Guide Methodol, 17 Vas St, H-1088 Budapest, Hungary
关键词
Dimensionality reduction; Nonparametric; Network science; Modularity; Similarity graphs; CLASSIFICATION;
D O I
10.1016/j.eswa.2023.121779
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Network analysis opens new horizons for data analysis methods, as the results of ever-developing network science can be integrated into classical data analysis techniques. This paper presents the generalized version of network-based dimensionality reduction and analysis (NDA). The main contributions of this paper are as follows: (1) The proposed generalized dimensionality reduction and analysis (GNDA) method already handles low-dimensional high-sample-size (LDHSS) and high-dimensional and low-sample-size (HDLSS) at the same time. In addition, compared with existing methods, we show that only the proposed GNDA method adequately estimates the number of latent variables (LVs). (2) The proposed GNDA already considers any symmetric and nonsymmetric similarity functions between indicators (i.e., variables or observations) to specify LVs. (3) The proposed prefiltering and resolution parameters provide the hierarchical version of GNDA to check the robustness of LVs. The proposed GNDA method is compared with traditional dimensionality reduction methods on various simulated and real-world datasets.
引用
收藏
页数:22
相关论文
共 44 条
  • [1] Principal component analysis
    Abdi, Herve
    Williams, Lynne J.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04): : 433 - 459
  • [2] Factor analysis, sparse PCA, and Sum of Ranking Differences-based improvements of the Promethee-GAIA multicriteria decision support technique
    Abonyi, Janos
    Czvetko, Timea
    Kosztyan, Zsolt T.
    Heberger, Karoly
    [J]. PLOS ONE, 2022, 17 (02):
  • [3] [Anonymous], 2017, arXiv
  • [4] Aversano G., 2018, INT C COMP METH SCI, P1
  • [5] Bellman RichardE., 1957, Ann. Oper. Res, DOI [10.1007/BF02188548, DOI 10.1007/BF02188548]
  • [6] BLATTNER FR, 2008, ASIAN NURS RES, V2, P17, DOI DOI 10.1016/S1976-1317(08)60025-0
  • [7] Fast unfolding of communities in large networks
    Blondel, Vincent D.
    Guillaume, Jean-Loup
    Lambiotte, Renaud
    Lefebvre, Etienne
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
  • [8] Cichocki A, 2016, FOUND TRENDS MACH LE, V9, P431, DOI [10.1561/2200000059, 10.1561/2200000067]
  • [9] Tensor Networks for Dimensionality Reduction and Large-Scale Optimization Part 1 Low-Rank Tensor Decompositions
    Cichocki, Andrzej
    Lee, Namgil
    Oseledets, Ivan
    Anh-Huy Phan
    Zhao, Qibin
    Mandic, Danilo P.
    [J]. FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2016, 9 (4-5): : I - +
  • [10] Boosting for tumor classification with gene expression data
    Dettling, M
    Bühlmann, P
    [J]. BIOINFORMATICS, 2003, 19 (09) : 1061 - 1069