Comprehensive genomic characterisation of the NAC transcription factor family and its response to drought stress in Eucommia ulmoides

被引:3
|
作者
Wang, Qi [1 ]
Hu, Fengcheng [2 ]
Yao, Zhaoqun [3 ]
Zhao, Xinfeng [2 ]
Chu, Guangming [1 ]
Ye, Jing [1 ]
机构
[1] Shihezi Univ, Agr Coll, Lab Forestry Dept, Shihezi, Peoples R China
[2] Forestry Bur Lveyang Cty, Lveyang Cty Forest Tree Seedling Workstat, Lveyang, Peoples R China
[3] Shihezi Univ, Agr Coll, Lab Plant Protect Dept, Shihezi, Peoples R China
来源
PEERJ | 2023年 / 11卷
关键词
Eucommia ulmoides; NAC family; Drought-responsive; Gene expression; Phylogenetic analysis; TURNIP-CRINKLE-VIRUS; NATURAL-RUBBER; ARABIDOPSIS; EVOLUTION; IDENTIFICATION; TOLERANCE; INSIGHTS; GENES;
D O I
10.7717/peerj.16298
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The NAC transcription factor family enhances plant adaptation to environmental challenges by participating in signalling pathways triggered by abiotic stressors and hormonal cues. We identified 69 NAC genes in the Eucommia ulmoides genome and renamed them according to their chromosomal distribution. These EuNAC proteins were clustered into 13 sub-families and distributed on 16 chromosomes and 2 scaffolds. The gene structures suggested that the number of exons varied from two to eight among these EuNACs, with a multitude of them containing three exons. Duplicated events resulted in a large gene family; 12 and four pairs of EuNACs were the result of segmental and tandem duplicates, respectively. The drought-stress response pattern of 12 putative EuNACs was observed under drought treatment, revealing that these EuNACs could play crucial roles in mitigating the effects of drought stress responses and serve as promising candidate genes for genetic engineering aimed at enhancing the drought stress tolerance of E. ulmoides. This study provides insight into the evolution, diversity, and characterisation of NAC genes in E. ulmoides and will be helpful for future characterisation of putative EuNACs associated with water deficit.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] A NAC transcription factor gene of Chickpea (Cicer arietinum), CarNAC3, is involved in drought stress response and various developmental processes
    Peng, Hui
    Cheng, Hui-Ying
    Chen, Chen
    Yu, Xin-Wang
    Yang, Jia-Ni
    Gao, Wen-Rui
    Shi, Qing-Hua
    Zhang, Hua
    Li, Jian-Gui
    Ma, Hao
    JOURNAL OF PLANT PHYSIOLOGY, 2009, 166 (17) : 1934 - 1945
  • [42] Cloning and characterization of the DIR1 promoter from Eucommia ulmoides Oliv and its response to hormonal and abiotic stress
    Ziyun Li
    Biao Li
    Yichen Zhao
    De-gang Zhao
    Plant Cell, Tissue and Organ Culture (PCTOC), 2021, 146 : 313 - 322
  • [43] Wheat NAC transcription factor TaNAC29 is involved in response to salt stress
    Xu, Zhongyang
    Gongbuzhaxi
    Wang, Changyou
    Xue, Fei
    Zhang, Hong
    Ji, Wanquan
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2015, 96 : 356 - 363
  • [44] An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response
    An, Jian-Ping
    Yao, Ji-Fang
    Xu, Rui-Rui
    You, Chun-Xiang
    Wang, Xiao-Fei
    Hao, Yu-Jin
    PHYSIOLOGIA PLANTARUM, 2018, 164 (03) : 279 - 289
  • [45] Comprehensive Genome-Wide Survey, Genomic Constitution and Expression Profiling of the NAC Transcription Factor Family in Foxtail Millet (Setaria italica L.)
    Puranik, Swati
    Sahu, Pranav Pankaj
    Mandal, Sambhu Nath
    Suresh, Venkata B.
    Parida, Swarup Kumar
    Prasad, Manoj
    PLOS ONE, 2013, 8 (05):
  • [46] Genome-Wide Identification and Genetic Characterization of Eucommia ulmoides NAC Family Genes and Functional Analysis of EuNAC9 in Relieving Mn2+ Stress
    Zhan, Niheng
    Zhao, Ziyi
    Ren, Lingyan
    Yang, Fuxin
    Zhang, Chuhan
    Qin, Lijun
    Gong, Xian
    JOURNAL OF PLANT BIOLOGY, 2024, 67 (06) : 449 - 466
  • [47] NAC103, a NAC family transcription factor, regulates ABA response during seed germination and seedling growth in Arabidopsis
    Ling Sun
    Li-Ping Liu
    Ya-Zhen Wang
    Lei Yang
    Mei-Jing Wang
    Jian-Xiang Liu
    Planta, 2020, 252
  • [48] Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance
    Lei Huang
    Yongbo Hong
    Huijuan Zhang
    Dayong Li
    Fengming Song
    BMC Plant Biology, 16
  • [49] Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance
    Huang, Lei
    Hong, Yongbo
    Zhang, Huijuan
    Li, Dayong
    Song, Fengming
    BMC PLANT BIOLOGY, 2016, 16
  • [50] Genome-wide analysis of the NAC transcription factor family in broomcorn millet (Panicum miliaceum L.) and expression analysis under drought stress
    Shan, Zhongying
    Jiang, Yanmiao
    Li, Haiquan
    Guo, Jinjie
    Dong, Ming
    Zhang, Jianan
    Liu, Guoqing
    BMC GENOMICS, 2020, 21 (01)