Gas-Dynamic Multiple-Mirror Trap GDMT

被引:19
作者
Skovorodin, D. I. [1 ,2 ]
Chernoshtanov, I. S. [1 ,2 ]
Amirov, V. Kh. [1 ]
Astrelin, V. T. [1 ,2 ]
Bagryanskii, P. A. [1 ]
Beklemishev, A. D. [1 ,2 ]
Burdakov, A. V. [1 ,3 ]
Gorbovskii, A. I. [1 ]
Kotel'nikov, I. A. [1 ]
Magommedov, E. M. [4 ]
Polosatkin, S. V. [1 ,2 ,3 ]
Postupaev, V. V. [1 ,2 ]
Prikhod'ko, V. V. [1 ,2 ]
Savkin, V. Ya. [1 ]
Soldatkina, E. I. [1 ,2 ]
Solomakhin, A. L. [1 ]
Sorokin, A. V. [1 ]
Sudnikov, A. V. [1 ,2 ]
Khristo, M. S. [1 ,2 ]
Shiyankov, S. V. [1 ]
Yakovlev, D. V. [1 ]
Shcherbakov, V. I. [4 ]
机构
[1] Russian Acad Sci, Budker Inst Nucl Phys, Siberian Branch, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Novosibirsk State Tech Univ, Novosibirsk 630073, Russia
[4] SuperOx, Moscow 117246, Russia
基金
俄罗斯科学基金会;
关键词
open magnetic trap; magnetic confinement; controlled thermonuclear fusion; ION-CYCLOTRON INSTABILITY; LOSS-CONE INSTABILITY; MAGNETIC-FIELD; PLASMA; CONFINEMENT; BETA; FUSION; BEAM; STABILIZATION; POWER;
D O I
10.1134/S1063780X23600986
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This work is devoted to the project of a new-generation open trap, gas-dynamic multiple-mirror trap (GDMT), proposed at the Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences. The aim of the project is to substantiate the possibility of using open traps as thermonuclear systems: a source of neutrons and, in the future, a thermonuclear reactor. The main objectives of the project are to develop technologies for long-term plasma maintenance in an open trap, optimize neutron source parameters based on the gas-dynamic trap, and demonstrate methods for improving plasma confinement. The magnetic vacuum system of the facility consists of a central trap, multiple-mirror sections that improve the longitudinal plasma confinement, and expanders designed to accommodate plasma flux absorbers. The facility is to be built in several stages. The starting configuration is broadly similar to the GDT facility and includes a central trap with strong magnetic mirrors and expanders. It solves two main problems: optimization of the parameters of the neutron source based on the gas-dynamic trap and study of the physics of the transition to the configuration of a diamagnetic trap with a high relative pressure beta approximate to 1, which significantly increases the efficiency of the system. This work describes the technical design of the starting configuration of the facility and outlines the physical principles on which the GDMT project is based.
引用
收藏
页码:1039 / 1086
页数:48
相关论文
共 161 条
  • [1] Investigation of ion acceleration effect influence on formation of ambipolar potential profile in the expander region
    Abramov, I. S.
    Gospodchikov, E. D.
    Shaposhnikov, R. A.
    Shalashov, A. G.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2020, 91 (01)
  • [2] Effect of ion acceleration on a plasma potential profile formed in the expander of a mirror trap
    Abramov, I. S.
    Gospodchikov, E. D.
    Shaposhnikov, R. A.
    Shalashov, A. G.
    [J]. NUCLEAR FUSION, 2019, 59 (10)
  • [3] Energy spectrum of longitudinal ion losses in the GDT facility under development of Alfv,n ion-cyclotron instability
    Anikeev, A. V.
    Bagryansky, P. A.
    Zaitsev, K. V.
    Korobeinikova, O. A.
    Murakhtin, S. V.
    Skovorodin, D. I.
    Yurov, D. V.
    [J]. PLASMA PHYSICS REPORTS, 2015, 41 (10) : 773 - 782
  • [4] STUDY OF MICROINSTABILITIES IN ANISOTROPIC PLASMOID OF THERMONUCLEAR IONS
    Anikeev, A. V.
    Bagryansky, P. A.
    Chernoshtanov, I. S.
    Korzhavina, M. S.
    Prikhodko, V. V.
    Tsidulko, Yu. A.
    [J]. FUSION SCIENCE AND TECHNOLOGY, 2011, 59 (1T) : 104 - 107
  • [5] Recent results on the GOL-3-II facility
    Arzhannikov, AV
    Astrelin, VT
    Burdakov, AV
    Denisenko, PV
    Ivanenko, VG
    Koidan, VS
    Konyukhov, VV
    Makarov, AG
    Mekler, KI
    Melnikov, PI
    Nikolaev, VS
    Perin, SS
    Polosatkin, SV
    Postupaev, VV
    Rovenskikh, AF
    Sinitsky, SL
    [J]. FUSION TECHNOLOGY, 1999, 35 (1T): : 112 - 118
  • [6] Direct observation of anomalously low longitudinal electron heat conductivity in the course of collective relaxation of a high-current relativistic electron beam in plasma
    Arzhannikov, AV
    Astrelin, VT
    Burdakov, AV
    Ivanov, IA
    Koidan, VS
    Mekler, KI
    Postupaev, VV
    Rovenskikh, AF
    Polosatkin, SV
    Sinitskii, SL
    [J]. JETP LETTERS, 2003, 77 (07) : 358 - 361
  • [7] Astrelin VT, 1998, PLASMA PHYS REP, V24, P414
  • [8] Development strategy for steady-state fusion volumetric neutron source based on the gas-dynamic trap
    Bagryansky, P. A.
    Chen, Z.
    Kotelnikov, I. A.
    Yakovlev, D. V.
    Prikhodko, V. V.
    Zeng, Q.
    Bai, Y.
    Yu, J.
    Ivanov, A. A.
    Wu, Y.
    [J]. NUCLEAR FUSION, 2020, 60 (03)
  • [9] Encouraging Results and New Ideas for Fusion in Linear Traps
    Bagryansky, P. A.
    Beklemishev, A. D.
    Postupaev, V. V.
    [J]. JOURNAL OF FUSION ENERGY, 2019, 38 (01) : 162 - 181
  • [10] ELECTRON CYCLOTRON RESONANCE HEATING EXPERIMENT IN THE GDT MAGNETIC MIRROR: RECENT EXPERIMENTS AND FUTURE PLANS
    Bagryansky, P. A.
    Gospodchikov, E. D.
    Kovalenko, Yu. V.
    Lizunov, A. A.
    Maximov, V. V.
    Murakhtin, S. V.
    Pinzhenin, E. I.
    Prikhodko, V. V.
    Savkin, V. Ya.
    Shalashov, A. G.
    Soldatkina, E. I.
    Solomakhin, A. L.
    Yakovlev, D. V.
    [J]. FUSION SCIENCE AND TECHNOLOGY, 2015, 68 (01) : 87 - 91