LQGDNet: A Local Quaternion and Global Deep Network for Facial Depression Recognition

被引:23
作者
Shang, Yuanyuan [1 ,2 ]
Pan, Yuchen [1 ,2 ]
Jiang, Xiao [3 ]
Shao, Zhuhong [1 ,4 ]
Guo, Guodong [5 ]
Liu, Tie [1 ,4 ]
Ding, Hui [1 ,4 ]
机构
[1] Capital Normal Univ, Coll Informat Engn, Beijing 100048, Peoples R China
[2] Beijing Key Lab Elect Syst Reliabil Technol, Beijing 100048, Peoples R China
[3] Horizon Robot, Beijing 100000, Peoples R China
[4] Beijing Engn Res Ctr Highly Reliable Embedded Syst, Beijing 100048, Peoples R China
[5] West Virginia Univ, Dept Comp Sci & Elect Engn, Morgantown, WV 26506 USA
基金
中国国家自然科学基金;
关键词
Feature extraction; Quaternions; Depression; Face recognition; Convolutional neural networks; Mouth; Deep learning; Depression recognition; quaternion; image recognition; deep learning; convolutional neural network; APPEARANCE; CUES;
D O I
10.1109/TAFFC.2021.3139651
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent visual-based depression recognition methods mostly use hand-crafted features with information lost in color channels, or deep network features with a limited performance from the finite data. In this paper, we propose a method called Local Quaternion and Global Deep Network (LQGDNet) which can combine advantages from hand-crafted and deep features. Specifically, the Quaternion XOR Asymmetrical Regional Local Gradient Coding (XOR-AR-LGC) is first designed, which encodes the facial images with local textures in the quaternion domain to keep the dependence of color channels, and integrated into the Quaternion Feature Extractor (QFE). To the best of our knowledge, it is the first attempt to use a quaternion-based method for facial depression recognition. Second, we design the Local Quaternion Representation Module (LQRM) composed of Local Deep Feature Extractor (LDFE) and QFE to output local quaternion facial features. Third, global deep facial features are encoded from the Global Deep Representation Module (GDRM) with the deep convolutional neural network. Finally, the LQGDNet integrates LQRM and GDRM with the local quaternion and global deep features and predicts the depression score. The experimental results on AVEC 2013 and AVEC 2014 show the superiority of our method compared to the state-of-the-art approaches.
引用
收藏
页码:2557 / 2563
页数:7
相关论文
共 47 条
  • [31] Quaternion Bessel-Fourier moments and their invariant descriptors for object reconstruction and recognition
    Shao, Zhuhong
    Shu, Huazhong
    Wu, Jiasong
    Chen, Beijing
    Coatrieux, Jean Louis
    [J]. PATTERN RECOGNITION, 2014, 47 (02) : 603 - 611
  • [32] Sidorov Maxim., 2014, P 4 INT WORKSHOP AUD, P81, DOI DOI 10.1145/2661806.2661816
  • [33] Spectral Representation of Behaviour Primitives for Depression Analysis
    Song, Siyang
    Jaiswal, Shashank
    Shen, Linlin
    Valstar, Michel
    [J]. IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (02) : 829 - 844
  • [34] QUATERNIONIC ANALYSIS
    SUDBERY, A
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1979, 85 (MAR) : 199 - 225
  • [35] Depression Level Prediction Using Deep Spatiotemporal Features and Multilayer Bi-LTSM
    Uddin, Md Azher
    Joolee, Joolekha Bibi
    Lee, Young-Koo
    [J]. IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (02) : 864 - 870
  • [36] Valstar M., 2014, P 4 INT WORKSH AUD V, P3, DOI [10.1145/2661806.2661807, DOI 10.1145/2661806.2661807]
  • [37] Valstar M., 2013, P 3 ACM INT WORKSHOP, P3
  • [38] Phase Space Reconstruction Driven Spatio-Temporal Feature Learning for Dynamic Facial Expression Recognition
    Wang, Shanmin
    Shuai, Hui
    Liu, Qingshan
    [J]. IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (03) : 1466 - 1476
  • [39] Automated Depression Diagnosis Based on Facial Dynamic Analysis and Sparse Coding
    Wen, Lingyun
    Li, Xin
    Guo, Guodong
    Zhu, Yu
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2015, 10 (07) : 1432 - 1441
  • [40] Williamson J., 2013, PROC 3 ACM INT WORKS, P41, DOI DOI 10.1145/2512530.2512531