LQGDNet: A Local Quaternion and Global Deep Network for Facial Depression Recognition

被引:23
作者
Shang, Yuanyuan [1 ,2 ]
Pan, Yuchen [1 ,2 ]
Jiang, Xiao [3 ]
Shao, Zhuhong [1 ,4 ]
Guo, Guodong [5 ]
Liu, Tie [1 ,4 ]
Ding, Hui [1 ,4 ]
机构
[1] Capital Normal Univ, Coll Informat Engn, Beijing 100048, Peoples R China
[2] Beijing Key Lab Elect Syst Reliabil Technol, Beijing 100048, Peoples R China
[3] Horizon Robot, Beijing 100000, Peoples R China
[4] Beijing Engn Res Ctr Highly Reliable Embedded Syst, Beijing 100048, Peoples R China
[5] West Virginia Univ, Dept Comp Sci & Elect Engn, Morgantown, WV 26506 USA
基金
中国国家自然科学基金;
关键词
Feature extraction; Quaternions; Depression; Face recognition; Convolutional neural networks; Mouth; Deep learning; Depression recognition; quaternion; image recognition; deep learning; convolutional neural network; APPEARANCE; CUES;
D O I
10.1109/TAFFC.2021.3139651
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent visual-based depression recognition methods mostly use hand-crafted features with information lost in color channels, or deep network features with a limited performance from the finite data. In this paper, we propose a method called Local Quaternion and Global Deep Network (LQGDNet) which can combine advantages from hand-crafted and deep features. Specifically, the Quaternion XOR Asymmetrical Regional Local Gradient Coding (XOR-AR-LGC) is first designed, which encodes the facial images with local textures in the quaternion domain to keep the dependence of color channels, and integrated into the Quaternion Feature Extractor (QFE). To the best of our knowledge, it is the first attempt to use a quaternion-based method for facial depression recognition. Second, we design the Local Quaternion Representation Module (LQRM) composed of Local Deep Feature Extractor (LDFE) and QFE to output local quaternion facial features. Third, global deep facial features are encoded from the Global Deep Representation Module (GDRM) with the deep convolutional neural network. Finally, the LQGDNet integrates LQRM and GDRM with the local quaternion and global deep features and predicts the depression score. The experimental results on AVEC 2013 and AVEC 2014 show the superiority of our method compared to the state-of-the-art approaches.
引用
收藏
页码:2557 / 2563
页数:7
相关论文
共 47 条
  • [1] Video-Based Depression Level Analysis by Encoding Deep Spatiotemporal Features
    Al Jazaery, Mohamad
    Guo, Guodong
    [J]. IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2021, 12 (01) : 262 - 268
  • [2] Estimation of Motions in Color Image Sequences Using Hypercomplex Fourier Transforms
    Alexiadis, Dimitrios S.
    Sergiadis, George D.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (01) : 168 - 187
  • [3] Baltrusaitis T, 2016, IEEE WINT CONF APPL
  • [4] Comparison of Beck Depression Inventories-IA and -II in psychiatric outpatients
    Beck, AT
    Steer, RA
    Ball, R
    Ranieri, WF
    [J]. JOURNAL OF PERSONALITY ASSESSMENT, 1996, 67 (03) : 588 - 597
  • [5] Kernel quaternion principal component analysis and its application in RGB-D object recognition
    Chen, Beijing
    Yang, Jianhao
    Jeon, Byeungwoo
    Zhang, Xinpeng
    [J]. NEUROCOMPUTING, 2017, 266 : 293 - 303
  • [6] Cummins N., 2013, P 3 ACM INT WORKSH A, P11, DOI [DOI 10.1145/2512530.2512535, 10.1145/2512530.2512535]
  • [7] de Melo W. C., 2019, IEEE INT CONF AUTOMA, P1, DOI [DOI 10.1109/fg.2019.8756568, 10.1109/FG.2019.8756568]
  • [8] MDN: A Deep Maximization-Differentiation Network for Spatio-Temporal Depression Detection
    de Melo, Wheidima Carneiro
    Granger, Eric
    Lopez, Miguel Bordallo
    [J]. IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (01) : 578 - 590
  • [9] de Melo WC, 2019, IEEE IMAGE PROC, P4544, DOI [10.1109/ICIP.2019.8803467, 10.1109/icip.2019.8803467]
  • [10] Dong JY, 2018, INT C PATT RECOG, P3433, DOI 10.1109/ICPR.2018.8545596