Modification of the electronic structure of g-C3N4 using urea to enhance the visible light-assisted degradation of organic pollutants

被引:4
|
作者
Mengesha, Daniel N. [1 ,2 ,3 ]
Shiferraw, Bezawit T. [1 ]
Kim, Hern [1 ]
机构
[1] Myongji Univ, Environm Waste Recycle Inst, Dept Energy Sci & Technol, Yongin 17058, Gyeonggi Do, South Korea
[2] Seoul Natl Univ, Dept Civil & Environm Engn, Seoul 08826, South Korea
[3] Seoul Natl Univ, Inst Construct & Environm Engn, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Nitrogen-doped g-C3N4; Photocatalysis; Organic pollutants; Electronic structure of g-C3N4; GRAPHITIC CARBON NITRIDE; EFFICIENT DEGRADATION; PHOTOCATALYST; SPECTROSCOPY; NANOSHEETS; ACTIVATION; REDUCTION; POLYMER; CO2; PEROXYMONOSULFATE;
D O I
10.1007/s11356-023-29692-2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Graphitic carbon nitride has been proven to be a good candidate for using solar energy for photo-induced pollutant degradation. However, the high photo-induced holes-electron recombination rate, unfavorable morphology, and textural properties limited their application. In this study, we present a novel g-C3N4 with a novel electronic structure and physiochemical properties by introducing a single nitrogen in the graphitic network of the g-C3N4 through a novel method involving step-by-step co-polycondensation of melamine and urea. Through extensive characterization using techniques such as XPS, UPS-XPS, Raman, XRD, FE-SEM, TEM, and N-2 adsorption-desorption, we analyze the electronic and crystallographic properties, as well as the morphology and textural features of the newly prepared g-C3N4 (N-g-C3N4). This material exhibits a lower C/N ratio of 0.62 compared to conventional g-C3N4 and a reduced band gap of 2.63 eV. The newly prepared g-C3N4 demonstrates a distinct valance band maxima that enhances its photo-induced oxidation potential, improving photocatalytic activity in degrading various organic pollutants. We thoroughly investigate the photocatalytic degradation performance of N-g-C3N4 for Congo red (CR) and sulfamethoxazole (SMX), and removal of up to 90 and 86% was attained after 2 h at solution pH of 5.5 for CR and SMX. The influence of different parameters was examined to understand the degradation mechanism and the influence of reactive oxygenated species. The catalytic performance is also evaluated in the degradation of various organic pollutants, and it showed a good performance.
引用
收藏
页码:102910 / 102926
页数:17
相关论文
共 50 条
  • [21] Enhanced visible-light degradation of organic dyes via porous g-C3N4
    Kumaravel, Sabarish
    Manoharan, Mathankumar
    Haldorai, Yuvaraj
    Rajendra Kumar, R. T.
    PHOSPHORUS SULFUR AND SILICON AND THE RELATED ELEMENTS, 2022, 197 (03) : 200 - 208
  • [22] Persulfate enhanced photocatalytic degradation of bisphenol A by g-C3N4 nanosheets under visible light irradiation
    Liu, Bochuan
    Qiao, Meng
    Wang, Yanbin
    Wang, Lijuan
    Gong, Yan
    Guo, Tao
    Zhao, Xu
    CHEMOSPHERE, 2017, 189 : 115 - 122
  • [23] Enhanced visible light photocatalytic activity of g-C3N4 assisted by hydrogen peroxide
    Chen, Quan-Liang
    Liu, Yi-Ling
    Tong, Li-Ge
    MATERIALS RESEARCH EXPRESS, 2018, 5 (04):
  • [24] Enhanced performance of g-C3N4/TiO2 photocatalysts for degradation of organic pollutants under visible light
    Song, Gaixue
    Chu, Zhenyu
    Jin, Wanqin
    Sun, Hongqi
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2015, 23 (08) : 1326 - 1334
  • [25] Visible-Light Driven Z-scheme g-C3N4/Fe-MOF Photocatalyst for Degradation of Organic Pollutants
    Rana, Garima
    Dhiman, Pooja
    Kumar, Amit
    Dawi, Elmuez A.
    Sharma, Gaurav
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2024, 34 (06) : 2688 - 2704
  • [26] Microwave-assisted chemical modification of g-C3N4 for photoinduced processes: organic degradation, hydrogen production and selective oxidation of alcohols
    Montalvo-Herrera, T.
    Sanchez-Martinez, D.
    Garcia-Lopez, Elisa, I
    Marci, G.
    RESEARCH ON CHEMICAL INTERMEDIATES, 2023, 49 (03) : 1197 - 1212
  • [27] In situ Carbon Modification of g-C3N4 from Urea co-Crystal with Enhanced Photocatalytic Activity Towards Degradation of Organic Dyes Under Visible Light
    Weifeng Zhao
    Ning Hao
    Gai Zhang
    Aijie Ma
    Weixing Chen
    Hongwei Zhou
    Dong Yang
    Ben Bin Xu
    Jie Kong
    Chemical Research in Chinese Universities, 2020, 36 : 1265 - 1271
  • [28] A template-free method to synthesize porous G-C3N4 with efficient visible light photodegradation of organic pollutants in water
    Azimi, Elham Boorboor
    Badiei, Alireza
    Sadr, Moayad Hossaini
    Amiri, Ahmad
    ADVANCED POWDER TECHNOLOGY, 2018, 29 (11) : 2785 - 2791
  • [29] Highly efficient activation of sulfite by p-type S-doped g-C3N4 under visible light for emerging contaminants degradation
    Lu, Wenyuan
    Xu, Lijie
    Shen, Xianbao
    Meng, Liang
    Pan, Yuwei
    Zhang, Ying
    Han, Jiangang
    Mei, Xiang
    Qiao, Weichuan
    Gan, Lu
    CHEMICAL ENGINEERING JOURNAL, 2023, 472
  • [30] G-C3N4 Dots Decorated with Hetaerolite: Visible-Light Photocatalyst for Degradation of Organic Contaminants
    Lahootifar, Zahra
    Habibi-Yangjeh, Aziz
    Rahim Pouran, Shima
    Khataee, Alireza
    CATALYSTS, 2023, 13 (02)