A review study on early detection of pancreatic ductal adenocarcinoma using artificial intelligence assisted diagnostic methods

被引:9
作者
Sijithra, P. C. [1 ]
Santhi, N. [1 ]
Ramasamy, N. [2 ]
机构
[1] Noorul Islam Ctr Higher Educ, Dept Elect & Commun Engn, Kumarakovil, Tamilnadu, India
[2] Noorul Islam Ctr Higher Educ, Dept Mech Engn, Kumarakovil, Tamilnadu, India
关键词
Pancreatic ductal adenocarcinoma; Early detection; MRI methods; Artificial Intelligence; Multi-Biomarker and imaging technique; CANCER; BIOMARKER; FEATURES; CELLS; CONSORTIUM; MIGRATION;
D O I
10.1016/j.ejrad.2023.110972
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, chemo-refractory and recalcitrant cancer and increases the number of deaths. With just around 1 in 4 individuals having respectable tumours, PDAC is frequently discovered when it is in an advanced stage. Accordingly, ED of PDAC improves patient survival. Subsequently, this paper reviews the early detection of PDAC, initially, the work presented an overview of PDAC. Subsequently, it reviews the molecular biology of pancreatic cancer and the development of molecular biomarkers are represented. This article illustrates the importance of identifying PDCA, the Immune Microenvironment of Pancreatic Cancer. Consequently, in this review, traditional and non-traditional imaging techniques are elucidated, traditional and non-traditional methods like endoscopic ultrasound, Multidetector CT, CT texture analysis, PET-CT, magnetic resonance imaging, diffusion-weighted imaging, secondary signs of pancreatic cancer, and molecular imaging. The use of artificial intelligence in pancreatic cancer, novel MRI techniques, and the future directions of AI for PDAC detection and prognosis is then described. Additionally, the research problem definition and motivation, current trends and developments, state of art of survey, and objective of the research are demonstrated in the review. Consequently, this review concluded that Artificial Intelligence Assisted Diagnostic Methods with MRI images can be proposed in future to improve the specificity and the sensitivity of the work, and to classify malignant PDAC with greater accuracy.
引用
收藏
页数:14
相关论文
共 63 条
[1]   Detection of circulating tumor DNA without a tumor-informed search using next-generation sequencing is a prognostic biomarker in pancreatic ductal adenocarcinoma [J].
Affolter, Kajsa E. ;
Hellwig, Sabine ;
Nix, David A. ;
Bronner, Mary P. ;
Thomas, Alun ;
Fuertes, Carrie L. ;
Hamil, Cindy L. ;
Garrido-Laguna, Ignacio ;
Scaife, Courtney L. ;
Mulvihill, Sean J. ;
Underhill, Hunter R. .
NEOPLASIA, 2021, 23 (09) :859-869
[2]  
Azzaz H.E.M, 2021, J RADIOL NUCL MED, V52, P1
[3]   Single-Cell Transcriptomics of Pancreatic Cancer Precursors Demonstrates Epithelial and Microenvironmental Heterogeneity as an Early Event in Neoplastic Progression [J].
Bernard, Vincent ;
Semaan, Alexander ;
Huang, Jonathan ;
San Lucas, F. Anthony ;
Mulu, Feven C. ;
Stephens, Bret M. ;
Guerrero, Paola A. ;
Huang, Yanqing ;
Zhao, Jun ;
Kamyabi, Nabiollah ;
Sen, Subrata ;
Scheet, Paul A. ;
Taniguchi, Cullen M. ;
Kim, Michael P. ;
Tzeng, Ching-Wei ;
Katz, Matthew H. ;
Singhi, Aatur D. ;
Maitra, Anirban ;
Alvarez, Hector A. .
CLINICAL CANCER RESEARCH, 2019, 25 (07) :2194-2205
[4]   Dissecting the Stromal Signaling and Regulation of Myeloid Cells and Memory Effector T Cells in Pancreatic Cancer [J].
Blair, Alex B. ;
Kim, Victoria M. ;
Muth, Stephen T. ;
Saung, May Tun ;
Lokker, Nathalie ;
Blouw, Barbara ;
Armstrong, Todd D. ;
Jaffee, Elizabeth M. ;
Tsujikawa, Takahiro ;
Coussens, Lisa M. ;
He, Jin ;
Burkhart, Richard A. ;
Wolfgang, Christopher L. ;
Zheng, Lei .
CLINICAL CANCER RESEARCH, 2019, 25 (17) :5351-5363
[5]   S100A10, a novel biomarker in pancreatic ductal adenocarcinoma [J].
Bydoun, Moamen ;
Sterea, Andra ;
Liptay, Henry ;
Uzans, Andrea ;
Huang, Weei-Yuarn ;
Rodrigues, Gloria J. ;
Weaver, Ian C. G. ;
Gu, Hong ;
Waisman, David M. .
MOLECULAR ONCOLOGY, 2018, 12 (11) :1895-1916
[6]   Artificial intelligence in pancreatic cancer: Toward precision diagnosis [J].
Cazacu, Irina M. ;
Udristoiu, Anca ;
Gruionu, Lucian Gheorghe ;
Iacob, Andreea ;
Gruionu, Gabriel ;
Saftoiu, Adrian .
ENDOSCOPIC ULTRASOUND, 2019, 8 (06) :357-359
[7]   Early Detection Initiative: A randomized controlled trial of algorithm-based screening in patients with new onset hyperglycemia and diabetes for early detection of pancreatic ductal adenocarcinoma [J].
Chari, Suresh T. ;
Maitra, Anirban ;
Matrisian, Lynn M. ;
Shrader, Eva E. ;
Wu, Bechien U. ;
Kambadakone, Avinash ;
Zhao, Ying-Qi ;
Kenner, Barbara ;
Rinaudo, Jo Ann S. ;
Srivastava, Sudhir ;
Huang, Ying ;
Feng, Ziding .
CONTEMPORARY CLINICAL TRIALS, 2022, 113
[8]   Plectin-1 Targeted Dual-modality Nanoparticles for Pancreatic Cancer Imaging [J].
Chen, Xiao ;
Zhou, Hao ;
Li, Xiaoshuang ;
Duan, Na ;
Hu, Shouyou ;
Liu, Yongkang ;
Yue, Yali ;
Song, Lina ;
Zhang, Yifen ;
Li, Donghui ;
Wang, Zhongqiu .
EBIOMEDICINE, 2018, 30 :129-137
[9]   Cinematic rendering of pancreatic neoplasms: preliminary observations and opportunities [J].
Chu, Linda C. ;
Johnson, Pamela T. ;
Fishman, Elliot K. .
ABDOMINAL RADIOLOGY, 2018, 43 (11) :3009-3015
[10]   Genitourinary Tumors: Update on Molecular Biomarkers for Diagnosis, Prognosis and Prediction of Response to Therapy [J].
Cimadamore, Alessia ;
Scarpelli, Marina ;
Santoni, Matteo ;
Massari, Francesco ;
Tartari, Francesca ;
Cerqueti, Roy ;
Lopez-Beltran, Antonio ;
Cheng, Liang ;
Montironi, Rodolfo .
CURRENT DRUG METABOLISM, 2019, 20 (04) :305-312