Machine Learning and VIIRS Satellite Retrievals for Skillful Fuel Moisture Content Monitoring in Wildfire Management

被引:5
|
作者
Schreck, John S. [1 ]
Petzke, William [2 ]
Jimenez, Pedro A. [2 ]
Brummet, Thomas [2 ]
Knievel, Jason C. [2 ]
James, Eric [3 ,4 ]
Kosovic, Branko [2 ]
Gagne, David John [1 ]
机构
[1] Natl Ctr Atmospher Res NCAR, Computat & Informat Syst Lab, Boulder, CO 80307 USA
[2] Natl Ctr Atmospher Res NCAR, Res Applicat Lab, Boulder, CO 80307 USA
[3] Univ Colorado, Cooperat Inst Res Environm Sci CIRES, Boulder, CO 80309 USA
[4] NOAA, Global Syst Lab, Boulder, CO 80305 USA
基金
美国国家科学基金会;
关键词
fuel moisture content; 10 h dead vegetation; machine learning models; wildland fires; VIIRS retrievals; METEOROLOGICAL DATA; WEATHER RESEARCH; MODIS;
D O I
10.3390/rs15133372
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Monitoring the fuel moisture content (FMC) of 10 h dead vegetation is crucial for managing and mitigating the impact of wildland fires. The combination of in situ FMC observations, numerical weather prediction (NWP) models, and satellite retrievals has facilitated the development of machine learning (ML) models to estimate 10 h dead FMC retrievals over the contiguous US (CONUS). In this study, ML models were trained using variables from the National Water Model, the High-Resolution Rapid Refresh (HRRR) NWP model, and static surface properties, along with surface reflectances and land surface temperature (LST) retrievals from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the Suomi-NPP satellite system. Extensive hyper-parameter optimization resulted in skillful FMC models compared to a daily climatography RMSE (+44%) and an hourly climatography RMSE (+24%). Notably, VIIRS retrievals played a significant role as predictors for estimating 10 h dead FMC, demonstrating their importance as a group due to their high band correlation. Conversely, individual predictors within the HRRR group exhibited relatively high importance according to explainability techniques. Removing both HRRR and VIIRS retrievals as model inputs led to a significant decline in performance, particularly with worse RMSE values when excluding VIIRS retrievals. The importance of the VIIRS predictor group reinforces the dynamic relationship between 10 h dead fuel, the atmosphere, and soil moisture. These findings underscore the significance of selecting appropriate data sources when utilizing ML models for FMC prediction. VIIRS retrievals, in combination with selected HRRR variables, emerge as critical components in achieving skillful FMC estimates.
引用
收藏
页数:19
相关论文
共 26 条
  • [1] ESTIMATION OF FUEL MOISTURE CONTENT BY INTEGRATING SURFACE AND SATELLITE OBSERVATIONS USING MACHINE LEARNING
    Kosovic, Branko
    Jimenez, Pedro
    McCandless, Tyler
    Petzke, Bill
    Massie, Steven
    Siems-Anderson, Amanda
    DeCastro, Amy
    Munoz-Esparza, Domingo
    Haupt, Sue Ellen
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 3626 - 3628
  • [2] Projecting live fuel moisture content via deep learning
    Miller, Lynn
    Zhu, Liujun
    Yebra, Marta
    Rudiger, Christoph
    Webb, Geoffrey I. I.
    INTERNATIONAL JOURNAL OF WILDLAND FIRE, 2023, 32 (05) : 709 - 727
  • [3] Low-variance estimation of live fuel moisture content using VIIRS data radiative transfer model
    Yang, Shuai
    Chen, Rui
    He, Binbin
    Zhang, Yiru
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2025, 136
  • [4] A FUEL MOISTURE CONTENT MONITORING METHODOLOGY BASED ON OPTICAL REMOTE SENSING
    Li, Fan
    Li, Yuxia
    Zhang, Cunjie
    Cheng, Yuan
    Li, Yuzhen
    He, Lei
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4634 - 4637
  • [5] Improving wildfire occurrence modelling by integrating time-series features of weather and fuel moisture content
    Quan, Xingwen
    Wang, Wenli
    Xie, Qian
    He, Binbin
    de Dios, Victor Resco
    Yebra, Marta
    Jiao, Miao
    Chen, Rui
    ENVIRONMENTAL MODELLING & SOFTWARE, 2023, 170
  • [6] MODELLING FIRE IGNITION PROBABILITY FROM SATELLITE ESTIMATES OF LIVE FUEL MOISTURE CONTENT
    Jurdao, Sara
    Chuvieco, Emilio
    Arevalillo, Jorge M.
    FIRE ECOLOGY, 2012, 8 (01): : 77 - 97
  • [7] A machine learning approach to estimating the error in satellite sea surface temperature retrievals
    Kumar, Chirag
    Podesta, Guillermo
    Kilpatrick, Katherine
    Minnett, Peter
    REMOTE SENSING OF ENVIRONMENT, 2021, 255
  • [8] EVALUATING THE SENTINEL-2A SATELLITE DATA FOR FUEL MOISTURE CONTENT RETRIEVAL
    Shu, Qidi
    Quan, Xingwen
    Yebra, Marta
    Liu, Xiangzhuo
    Wang, Long
    Zhang, Yang
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 9416 - 9419
  • [9] Modelling Fire Ignition Probability from Satellite Estimates of Live Fuel Moisture Content
    Sara Jurdao
    Emilio Chuvieco
    Jorge M. Arevalillo
    Fire Ecology, 2012, 8 : 77 - 97
  • [10] Examining the Transferability of Remote-Sensing-Based Models of Live Fuel Moisture Content for Predicting Wildfire Characteristics
    Guk, Edna
    Bar-Massada, Avi
    Yebra, Marta
    Scortechini, Gianluca
    Levin, Noam
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 14762 - 14776