FORBIDDEN SUBGRAPHS FOR EXISTENCES OF (CONNECTED) 2-FACTORS OF A GRAPH

被引:0
作者
Yang, Xiaojing [1 ]
Xiong, Liming [2 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng 475004, Peoples R China
[2] Beijing Inst Technol, Sch Math & Stat, Beijing Key Lab MCAACI, Beijing 100081, Peoples R China
关键词
forbidden subgraph; even factor; 2-factor; hamiltonian; PROOF;
D O I
10.7151/dmgt.2366
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Clearly, having a 2-factor in a graph is a necessary condition for a graph to be hamiltonian, while having an even factor in graph is a necessary con-dition for a graph to have a 2-factor. In this paper, we completely charac-terize the forbidden subgraph and pairs of forbidden subgraphs that force a 2-connected graph admitting a 2-factor (a necessary condition) to be hamil-tonian and a connected graph with an even factor (a necessary condition) to have a 2-factor, respectively. Our results show that these pairs of forbid-den subgraphs become wider than those in Faudree, Gould and in Fujisawa, Saito, respectively, if we impose the two necessary conditions, respectively.
引用
收藏
页码:211 / 224
页数:14
相关论文
共 10 条
  • [1] AN ALGORITHMIC PROOF OF TUTTES F-FACTOR THEOREM
    ANSTEE, RP
    [J]. JOURNAL OF ALGORITHMS, 1985, 6 (01) : 112 - 131
  • [2] THE EDGE HAMILTONIAN PATH PROBLEM IS NP-COMPLETE
    BERTOSSI, AA
    [J]. INFORMATION PROCESSING LETTERS, 1981, 13 (4-5) : 157 - 159
  • [3] Bondy J. A., 2008, GRAPH THEORY
  • [4] Egawa Y, 2008, BOLYAI SOC MATH STUD, V17, P67
  • [5] Forbidden subgraphs that imply 2-factors
    Faudree, J. R.
    Faudree, R. J.
    Ryjacek, Z.
    [J]. DISCRETE MATHEMATICS, 2008, 308 (09) : 1571 - 1582
  • [6] Characterizing forbidden pairs for Hamiltonian properties
    Faudree, RJ
    Gould, RJ
    [J]. DISCRETE MATHEMATICS, 1997, 173 (1-3) : 45 - 60
  • [7] A Pair of Forbidden Subgraphs and 2-Factors
    Fujisawa, Jun
    Saito, Akira
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2012, 21 (1-2) : 149 - 158
  • [8] Karp R, 1972, COMPLEXITY COMPUTER, P85, DOI [10.1007/978-3-540-68279-0-8, 10.1007/978-1-4684-2001-2_9, DOI 10.1007/978-1-4684-2001-2_9]
  • [9] Karp R. M., 1975, Networks, V5, P45
  • [10] Forbidden subgraphs for supereulerian and hamiltonian graphs
    Yang, Xiaojing
    Du, Junfeng
    Xiong, Liming
    [J]. DISCRETE APPLIED MATHEMATICS, 2021, 288 : 192 - 200