Investigation and benchmarking of U-Nets on prostate segmentation tasks

被引:19
作者
Bhandary, Shrajan [1 ]
Kuhn, Dejan [2 ,3 ,4 ]
Babaiee, Zahra [1 ]
Fechter, Tobias [2 ,3 ,4 ]
Benndorf, Matthias [5 ]
Zamboglou, Constantinos [3 ,4 ,6 ,7 ]
Grosu, Anca-Ligia [3 ,4 ,6 ]
Grosu, Radu [1 ,8 ]
机构
[1] Tech Univ Wien, Inst Comp Engn, Fac Informat, Cyber Phys Syst Div, A-1040 Vienna, Austria
[2] Univ Freiburg, Dept Radiat Oncol, Div Med Phys, Med Ctr, D-79106 Freiburg, Germany
[3] Univ Freiburg, Fac Med, D-79106 Freiburg, Germany
[4] German Canc Consortium DKTK, Partner Site Freiburg, D-79106 Freiburg, Germany
[5] Univ Freiburg, Med Ctr Univ Freiburg, Fac Med, Dept Diagnost & Intervent Radiol, D-79106 Freiburg, Germany
[6] Univ Freiburg, Dept Radiat Oncol, Med Ctr, D-79106 Freiburg, Germany
[7] European Univ, German Oncol Ctr, CY-4108 Limassol, Cyprus
[8] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
基金
奥地利科学基金会;
关键词
Medical imaging; Automatic prostate segmentation; U-net variations; Comparison framework; CLINICAL TARGET VOLUMES; INTEROBSERVER VARIABILITY; RADIOMICS; FEATURES; ORGANS;
D O I
10.1016/j.compmedimag.2023.102241
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In healthcare, a growing number of physicians and support staff are striving to facilitate personalized radiotherapy regimens for patients with prostate cancer. This is because individual patient biology is unique, and employing a single approach for all is inefficient. A crucial step for customizing radiotherapy planning and gaining fundamental information about the disease, is the identification and delineation of targeted structures. However, accurate biomedical image segmentation is time-consuming, requires considerable experience and is prone to observer variability. In the past decade, the use of deep learning models has significantly increased in the field of medical image segmentation. At present, a vast number of anatomical structures can be demarcated on a clinician's level with deep learning models. These models would not only unload work, but they can offer unbiased characterization of the disease. The main architectures used in segmentation are the U-Net and its variants, that exhibit outstanding performances. However, reproducing results or directly comparing methods is often limited by closed source of data and the large heterogeneity among medical images. With this in mind, our intention is to provide a reliable source for assessing deep learning models. As an example, we chose the challenging task of delineating the prostate gland in multi-modal images. First, this paper provides a comprehensive review of current state-of-the-art convolutional neural networks for 3D prostate segmentation. Second, utilizing public and in-house CT and MR datasets of varying properties, we created a framework for an objective comparison of automatic prostate segmentation algorithms. The framework was used for rigorous evaluations of the models, highlighting their strengths and weaknesses.
引用
收藏
页数:14
相关论文
共 86 条
[1]   The Medical Segmentation Decathlon [J].
Antonelli, Michela ;
Reinke, Annika ;
Bakas, Spyridon ;
Farahani, Keyvan ;
Kopp-Schneider, Annette ;
Landman, Bennett A. ;
Litjens, Geert ;
Menze, Bjoern ;
Ronneberger, Olaf ;
Summers, Ronald M. ;
van Ginneken, Bram ;
Bilello, Michel ;
Bilic, Patrick ;
Christ, Patrick F. ;
Do, Richard K. G. ;
Gollub, Marc J. ;
Heckers, Stephan H. ;
Huisman, Henkjan ;
Jarnagin, William R. ;
McHugo, Maureen K. ;
Napel, Sandy ;
Pernicka, Jennifer S. Golia ;
Rhode, Kawal ;
Tobon-Gomez, Catalina ;
Vorontsov, Eugene ;
Meakin, James A. ;
Ourselin, Sebastien ;
Wiesenfarth, Manuel ;
Arbelaez, Pablo ;
Bae, Byeonguk ;
Chen, Sihong ;
Daza, Laura ;
Feng, Jianjiang ;
He, Baochun ;
Isensee, Fabian ;
Ji, Yuanfeng ;
Jia, Fucang ;
Kim, Ildoo ;
Maier-Hein, Klaus ;
Merhof, Dorit ;
Pai, Akshay ;
Park, Beomhee ;
Perslev, Mathias ;
Rezaiifar, Ramin ;
Rippel, Oliver ;
Sarasua, Ignacio ;
Shen, Wei ;
Son, Jaemin ;
Wachinger, Christian ;
Wang, Liansheng .
NATURE COMMUNICATIONS, 2022, 13 (01)
[2]  
Baid U., 2021, CORR
[3]  
Bloch B Nicholas, 2015, TCIA
[4]   Single-timepoint low-dimensional characterization and classification of acute versus chronic multiple sclerosis lesions using machine learning [J].
Caba, Bastien ;
Cafaro, Alexandre ;
Lombard, Aurelien ;
Arnold, Douglas L. ;
Elliott, Colm ;
Liu, Dawei ;
Jiang, Xiaotong ;
Gafson, Arie ;
Fisher, Elizabeth ;
Belachew, Shibeshih Mitiku ;
Paragios, Nikos .
NEUROIMAGE, 2023, 265
[5]   Clinical evaluation of atlas- and deep learning-based automatic segmentation of multiple organs and clinical target volumes for breast cancer [J].
Choi, Min Seo ;
Choi, Byeong Su ;
Chung, Seung Yeun ;
Kim, Nalee ;
Chun, Jaehee ;
Kim, Yong Bae ;
Chang, Jee Suk ;
Kim, Jin Sung .
RADIOTHERAPY AND ONCOLOGY, 2020, 153 :139-145
[6]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[7]   Deep Learning-Based Methods for Prostate Segmentation in Magnetic Resonance Imaging [J].
Comelli, Albert ;
Dahiya, Navdeep ;
Stefano, Alessandro ;
Vernuccio, Federica ;
Portoghese, Marzia ;
Cutaia, Giuseppe ;
Bruno, Alberto ;
Salvaggio, Giuseppe ;
Yezzi, Anthony .
APPLIED SCIENCES-BASEL, 2021, 11 (02) :1-13
[8]  
Crimi A., 2022, Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, DOI [10.1007/978-3-031-08999-2, DOI 10.1007/978-3-031-08999-2]
[9]   Clinical Validation of a Deep-Learning Segmentation Software in Head and Neck: An Early Analysis in a Developing Radiation Oncology Center [J].
D'Aviero, Andrea ;
Re, Alessia ;
Catucci, Francesco ;
Piccari, Danila ;
Votta, Claudio ;
Piro, Domenico ;
Piras, Antonio ;
Di Dio, Carmela ;
Iezzi, Martina ;
Preziosi, Francesco ;
Menna, Sebastiano ;
Quaranta, Flaviovincenzo ;
Boschetti, Althea ;
Marras, Marco ;
Micciche, Francesco ;
Gallus, Roberto ;
Indovina, Luca ;
Bussu, Francesco ;
Valentini, Vincenzo ;
Cusumano, Davide ;
Mattiucci, Gian Carlo .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (15)
[10]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848