Monolithic Nickel Cata Featured with High-Density Crystalline Steps for Stable Hydrogen Evolution at Large Current Density

被引:27
作者
Lei, Zhanwu [1 ,2 ]
Liu, Peng [1 ]
Yang, Xin [1 ]
Zou, Peichao [3 ]
Nairan, Adeela [4 ]
Jiao, Shuhong [2 ]
Cao, Ruiguo [2 ]
Wang, Wenlong [5 ]
Kang, Feiyu [1 ,6 ]
Yang, Cheng [1 ]
机构
[1] Tsinghua Univ, Inst Mat Res, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
[2] Univ Sci & Technol China, Dept Mat Sci & Engn, Hefei Natl Lab Phys Sci Microscale, CAS Key Lab Mat Energy Convers, Hefei 230026, Peoples R China
[3] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
[4] Zhejiang Sci Tech Univ, Inst Funct Porous Mat, Sch Mat Sci & Engn, Hangzhou 310018, Peoples R China
[5] Tsinghua Univ, Sch Environm, State Environm Protect Key Lab Microorganism Appli, Beijing 100084, Peoples R China
[6] Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst TBSI, Shenzhen 518055, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
electrocatalysis; high stability; hydrogen evolution reaction; large current density; nonprecious metal cata; NI; ELECTROCATALYSTS; NANOCRYSTALS; CHEMISTRY; METALS;
D O I
10.1002/smll.202301247
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Producing hydrogen via electrochemical water splitting with minimum environmental harm can help resolve the energy crisis in a sustainable way. Here, this work fabricates the pure nickel nanopyramid arrays (NNAs) with dense high-index crystalline steps as the cata electrode via a screw dislocation-dominated growth kinetic for long-term durable and large current density hydrogen evolution reaction. Such a monolithic NNAs electrode offers an ultralow overpotential of 469 mV at a current density of 5000 mA cm(-2) in 1.0 m KOH electrolyte and shows a high stability up to 7000 h at a current density of 1000 mA cm(-2), which outperforms the reported catas and even the commercial platinum cata for long-term services under high current densities. Its unique structure can substantially stabilize the high-density surface crystalline steps on the catalytic electrode, which significantly elevates the catalytic activity and durability of nickel in an alkaline medium. In a typical commercial hydrogen gas generator, the total energy conversion rate of NNAs reaches 84.5% of that of a commercial Pt/Ti cata during a 60-day test of hydrogen production. This work approach can provide insights into the development of industry-compatible long-term durable, and high-performance non-noble metal catas for various applications.
引用
收藏
页数:11
相关论文
共 51 条
[1]   Highly catalytic active PtNiCu nanochains for hydrogen evolution reaction [J].
Cao, Xia ;
Han, Yu ;
Gao, Caizhen ;
Xu, Ying ;
Huang, Xiaomin ;
Willander, Magnus ;
Wang, Ning .
NANO ENERGY, 2014, 9 :301-308
[2]   Electrocatalyst approaches and challenges for automotive fuel cells [J].
Debe, Mark K. .
NATURE, 2012, 486 (7401) :43-51
[3]   Trimetallic TriStar Nanostructures: Tuning Electronic and Surface Structures for Enhanced Electrocatalytic Hydrogen Evolution [J].
Du, Nana ;
Wang, Chengming ;
Wang, Xijun ;
Lin, Yue ;
Jiang, Jun ;
Xiong, Yujie .
ADVANCED MATERIALS, 2016, 28 (10) :2077-+
[4]   Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis [J].
Gong, Ming ;
Zhou, Wu ;
Tsai, Mon-Che ;
Zhou, Jigang ;
Guan, Mingyun ;
Lin, Meng-Chang ;
Zhang, Bo ;
Hu, Yongfeng ;
Wang, Di-Yan ;
Yang, Jiang ;
Pennycook, Stephen J. ;
Hwang, Bing-Joe ;
Dai, Hongjie .
NATURE COMMUNICATIONS, 2014, 5
[5]   Amorphizing noble metal chalcogenide catalysts at the single-layer limit towards hydrogen production [J].
He, Yongmin ;
Liu, Liren ;
Zhu, Chao ;
Guo, Shasha ;
Golani, Prafful ;
Koo, Bonhyeong ;
Tang, Pengyi ;
Zhao, Zhiqiang ;
Xu, Manzhang ;
Yu, Peng ;
Zhou, Xin ;
Gao, Caitian ;
Wang, Xuewen ;
Shi, Zude ;
Zheng, Lu ;
Yang, Jiefu ;
Shin, Byungha ;
Arbiol, Jordi ;
Duan, Huigao ;
Du, Yonghua ;
Heggen, Marc ;
Dunin-Borkowski, Rafal E. ;
Guo, Wanlin ;
Wang, Qi Jie ;
Zhang, Zhuhua ;
Liu, Zheng .
NATURE CATALYSIS, 2022, 5 (03) :212-221
[6]   A climbing image nudged elastic band method for finding saddle points and minimum energy paths [J].
Henkelman, G ;
Uberuaga, BP ;
Jónsson, H .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (22) :9901-9904
[7]   RETRACTED: Structure and mechanism of the essential two-component signal-transduction system WalKR in Staphylococcus aureus (Retracted article. See vol. 8, art no 1431, 2017) [J].
Ji, Quanjiang ;
Chen, Peter J. ;
Qin, Guangrong ;
Deng, Xin ;
Hao, Ziyang ;
Wawrzak, Zdzislaw ;
Yeo, Won-Sik ;
Quang, Jenny Winjing ;
Cho, Hoonsik ;
Luo, Guan-Zheng ;
Weng, Xiaocheng ;
You, Qiancheng ;
Luan, Chi-Hao ;
Yang, Xiaojing ;
Bae, Taeok ;
Yu, Kunqian ;
Jiang, Hualiang ;
He, Chuan .
NATURE COMMUNICATIONS, 2016, 7
[8]   Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions [J].
Jiao, Yan ;
Zheng, Yao ;
Jaroniec, Mietek ;
Qiao, Shi Zhang .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (08) :2060-2086
[9]   Considerations for the scaling-up of water splitting catalysts [J].
Kibsgaard, Jakob ;
Chorkendorff, Ib .
NATURE ENERGY, 2019, 4 (06) :430-433
[10]   Tailoring Binding Abilities by Incorporating Oxophilic Transition Metals on 3D Nanostructured Ni Arrays for Accelerated Alkaline Hydrogen Evolution Reaction [J].
Kim, Jaerim ;
Jung, Hyeonjung ;
Jung, Sang-Mun ;
Hwang, Jinwoo ;
Kim, Dong Yeong ;
Lee, Noho ;
Kim, Kyu-Su ;
Kwon, Hyunah ;
Kim, Yong-Tae ;
Han, Jeong Woo ;
Kim, Jong Kyu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (03) :1399-1408