Nonlocal cubic and quintic nonlinear wave patterns in pure-quartic media

被引:13
作者
Tiofack, Camus Gaston Latchio [1 ]
Tabi, Conrad Bertrand [2 ]
Tagwo, Hippolyte [3 ,4 ]
Kofane, Timoleon Crepin [2 ,3 ]
机构
[1] Univ Maroua, Fac Sci, POB 814, Maroua, Cameroon
[2] Botswana Int Univ Sci & Technol, Dept Phys & Astron, Private Mail Bag 16, Palapye, Botswana
[3] Univ Yaounde I, Fac Sci, Dept Phys, Lab Mech, POB 812, Yaounde, Cameroon
[4] Univ Yaounde I, Univ Inst Wood Technol, POB 306, Mbalmayo, Cameroon
关键词
pure-quartic solitons; nonlocal media; modulational instability; MODULATIONAL INSTABILITY; 4TH-ORDER DISPERSION; OPTICAL FIBERS; SOLITONS; TRAINS;
D O I
10.1088/2040-8986/acc082
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this work, pure-quartic soliton (PQS)formation is investigated in the framework of a nonlinear Schrodinger equation with competing Kerr (cubic) and non-Kerr (quintic) nonlocal nonlinearities and quartic dispersion. In the process, the modulational instability (MI) phenomenon is activated under a suitable balance between the nonlocal nonlinearities and the quartic dispersion, both for exponential and rectangular nonlocal nonlinear responses. Interestingly, the maximum MI growth rate and bandwidth are reduced or can completely be suppressed for some specific values of the cubic and quintic nonlocality parameters, depending on the type of nonlocal response. The analytical results are confirmed via direct numerical simulations, where the instability supports the signature of pure-quartic dark and bright solitons. These results may provide a better understanding of PQS structures for their potential applications in the next generation of nonlinear optical devices.
引用
收藏
页数:11
相关论文
共 62 条
[41]   Electronegative (3+1)-dimensional modulated excitations in plasmas [J].
Tabi, Conrad B. ;
Panguetna, Cherif S. ;
Kofane, Timoleon C. .
PHYSICA B-CONDENSED MATTER, 2018, 545 :370-376
[42]   Modulational instability in nonlinear saturable media with competing nonlocal nonlinearity [J].
Tabi, Conrad Bertrand ;
Tagwo, Hippolyte ;
Kofane, Timoleon Crepin .
PHYSICAL REVIEW E, 2022, 106 (05)
[43]   (2+1)-dimensional unstable matter waves in self-interacting pseudospin-1/2 BECs under combined Rashba and Dresselhaus spin-orbit couplings [J].
Tabi, Conrad Bertrand ;
Veni, Saravana ;
Kofane, Timoleon Crepin .
PHYSICS LETTERS A, 2022, 442
[44]   Generation of matter waves in Bose-Bose mixtures with helicoidal spin-orbit coupling [J].
Tabi, Conrad Bertrand ;
Veni, Saravana ;
Kofane, Timoleon Crepin .
PHYSICAL REVIEW A, 2021, 104 (03)
[45]   Effect of competing cubic-quintic nonlinearities on the modulational instability in nonlocal Kerr-type media [J].
Tagwo, H. ;
Tiofack, C. G. L. ;
Dafounansou, O. ;
Mohamadou, A. ;
Kofane, T. C. .
JOURNAL OF MODERN OPTICS, 2016, 63 (06) :558-565
[46]   OBSERVATION OF MODULATIONAL INSTABILITY IN OPTICAL FIBERS [J].
TAI, K ;
HASEGAWA, A ;
TOMITA, A .
PHYSICAL REVIEW LETTERS, 1986, 56 (02) :135-138
[47]   Stationary and dynamical properties of pure-quartic solitons [J].
Tam, Kevin K. K. ;
Alexander, Tristram J. ;
Blanco-Redondo, Andrea ;
de Sterke, C. Martijn .
OPTICS LETTERS, 2019, 44 (13) :3306-3309
[48]   SELF-TRAPPING AND INSTABILITY OF HYDROMAGNETIC WAVES ALONG MAGNETIC FIELD IN A COLD PLASMA [J].
TANIUTI, T ;
WASHIMI, H .
PHYSICAL REVIEW LETTERS, 1968, 21 (04) :209-+
[49]   Spatial solitons and stability in the one-dimensional and the two-dimensional generalized nonlinear Schrodinger equation with fourth-order diffraction and parity-time-symmetric potentials [J].
Tiofack, C. G. L. ;
Ndzana, F. H. ;
Mohamadou, A. ;
Kofane, T. C. .
PHYSICAL REVIEW E, 2018, 97 (03)
[50]   Modulational instability in nonlocal media with competing non-Kerr nonlinearities [J].
Tiofack, C. G. Latchio ;
Tagwo, H. ;
Dafounansou, O. ;
Mohamadou, A. ;
Kofane, T. C. .
OPTICS COMMUNICATIONS, 2015, 357 :7-14