Nonlocal cubic and quintic nonlinear wave patterns in pure-quartic media

被引:13
作者
Tiofack, Camus Gaston Latchio [1 ]
Tabi, Conrad Bertrand [2 ]
Tagwo, Hippolyte [3 ,4 ]
Kofane, Timoleon Crepin [2 ,3 ]
机构
[1] Univ Maroua, Fac Sci, POB 814, Maroua, Cameroon
[2] Botswana Int Univ Sci & Technol, Dept Phys & Astron, Private Mail Bag 16, Palapye, Botswana
[3] Univ Yaounde I, Fac Sci, Dept Phys, Lab Mech, POB 812, Yaounde, Cameroon
[4] Univ Yaounde I, Univ Inst Wood Technol, POB 306, Mbalmayo, Cameroon
关键词
pure-quartic solitons; nonlocal media; modulational instability; MODULATIONAL INSTABILITY; 4TH-ORDER DISPERSION; OPTICAL FIBERS; SOLITONS; TRAINS;
D O I
10.1088/2040-8986/acc082
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this work, pure-quartic soliton (PQS)formation is investigated in the framework of a nonlinear Schrodinger equation with competing Kerr (cubic) and non-Kerr (quintic) nonlocal nonlinearities and quartic dispersion. In the process, the modulational instability (MI) phenomenon is activated under a suitable balance between the nonlocal nonlinearities and the quartic dispersion, both for exponential and rectangular nonlocal nonlinear responses. Interestingly, the maximum MI growth rate and bandwidth are reduced or can completely be suppressed for some specific values of the cubic and quintic nonlocality parameters, depending on the type of nonlocal response. The analytical results are confirmed via direct numerical simulations, where the instability supports the signature of pure-quartic dark and bright solitons. These results may provide a better understanding of PQS structures for their potential applications in the next generation of nonlinear optical devices.
引用
收藏
页数:11
相关论文
共 62 条
[1]   MODULATIONAL INSTABILITY IN OPTICAL FIBERS NEAR THE ZERO DISPERSION POINT [J].
ABDULLAEV, FK ;
DARMANYAN, SA ;
BISCHOFF, S ;
CHRISTIANSEN, PL ;
SORENSEN, MP .
OPTICS COMMUNICATIONS, 1994, 108 (1-3) :60-64
[2]  
Ablowitz M. J., 2011, Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons, DOI DOI 10.1017/CBO9780511998324
[3]  
Agrawal GP, 2008, APPLICATIONS OF NONLINEAR FIBER OPTICS, 2ND EDITION, P1
[4]  
Akhmediev N N., 1997, Nonlinear Pulses and Beams, Vvol 12
[5]   Dark solitons under higher-order dispersion [J].
Alexander, Tristram J. ;
Tsolias, G. A. ;
Demirkaya, A. ;
Decker, Robert J. ;
de Sterke, C. Martijn ;
Kevrekidis, P. G. .
OPTICS LETTERS, 2022, 47 (05) :1174-1177
[6]   DISINTEGRATION OF WAVE TRAINS ON DEEP WATER .1. THEORY [J].
BENJAMIN, TB ;
FEIR, JE .
JOURNAL OF FLUID MECHANICS, 1967, 27 :417-&
[7]   INSTABILITY OF PERIODIC WAVETRAINS IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1967, 299 (1456) :59-&
[8]   Pure-quartic solitons [J].
Blanco-Redondo, Andrea ;
Martijn, de Sterke C. ;
Sipe, J. E. ;
Krauss, Thomas F. ;
Eggleton, Benjamin J. ;
Husko, Chad .
NATURE COMMUNICATIONS, 2016, 7
[9]   Localization of optical pulses in guided wave structures with only fourth order dispersion [J].
Cardoso, Wesley B. .
PHYSICS LETTERS A, 2019, 383 (28)
[10]   MODULATION INSTABILITY IN THE REGION OF MINIMUM GROUP-VELOCITY DISPERSION OF SINGLE-MODE OPTICAL FIBERS VIA AN EXTENDED NONLINEAR SCHRODINGER-EQUATION [J].
CAVALCANTI, SB ;
CRESSONI, JC ;
DACRUZ, HR ;
GOUVEIANETO, AS .
PHYSICAL REVIEW A, 1991, 43 (11) :6162-6165