Precisely Controllable Artificial Muscle with Continuous Morphing based on "Breathing" of Supramolecular Columns

被引:17
作者
Yang, Zifan [1 ]
Li, Jiahua [1 ]
Chen, Xu [1 ]
Fan, Yining [1 ]
Huang, Jin [2 ]
Yu, Haifeng [3 ]
Yang, Shuang [1 ]
Chen, Er-Qiang [1 ]
机构
[1] Peking Univ, Coll Chem & Mol Engn, Ctr Soft Mater Sci & Engn, Beijing Natl Lab Mol Sci,Key Lab Polymer Chem & Ph, Beijing 100871, Peoples R China
[2] Beihang Univ, Sch Chem, Key Lab Bioinspired Smart Interfacial Sci & Techno, Minist Educ, Beijing 100871, Peoples R China
[3] Peking Univ, Sch Mat Sci & Engn, Key Lab Polymer Chem & Phys, Minist Educ, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
artificial muscle; columnar liquid crystal phase; dual photoresponse; quantitatively elongation and bending; side-chain liquid crystal polymers; LIQUID-CRYSTALLINE POLYMERS; CONTRACTION; EMISSION; PHASES; SHAPE;
D O I
10.1002/adma.202211648
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Skeletal muscles are natural motors executing sophisticated work through precise control of linear contraction. Although various liquid crystal polymers based artificial muscles have been designed, the mechanism based on mainly the order-disorder transition usually leads to discrete shape morphing, leaving arbitrary and precise deformation a huge challenge. Here, one novel photoresponsive hemiphasmidic side-chain liquid crystal polymer with a unique "breathing" columnar phase that enables continuous morphing is presented. Due to confinement inside the supramolecular columnar assembly, the cooperative movements of side-chains and backbones generate a significant negative thermal expansion and lead to temperature-controllable muscle-like elongation/contraction in the oriented polymer strip. The irreversible isomerization of the photoresponsive mesogens results in the synergistic phototunable bending and high-contrast fluorescence change. Based on the orthogonal responses to heat and light, controllable arm-like bending motions of this material, which is applicable in constructing advanced artificial muscles or intelligent soft robotics, are further demonstrated.
引用
收藏
页数:10
相关论文
共 59 条
  • [1] Hydraulically amplified self-healing electrostatic actuators with muscle-like performance
    Acome, E.
    Mitchell, S. K.
    Morrissey, T. G.
    Emmett, M. B.
    Benjamin, C.
    King, M.
    Radakovitz, M.
    Keplinger, C.
    [J]. SCIENCE, 2018, 359 (6371) : 61 - 65
  • [2] The M-band: an elastic web that crosslinks thick filaments in the center of the sarcomere
    Agarkova, I
    Perriard, JC
    [J]. TRENDS IN CELL BIOLOGY, 2005, 15 (09) : 477 - 485
  • [3] Enhanced emission and its switching in fluorescent organic nanoparticles
    An, BK
    Kwon, SK
    Jung, SD
    Park, SY
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (48) : 14410 - 14415
  • [4] Arazoe H, 2016, NAT MATER, V15, P1084, DOI [10.1038/NMAT4693, 10.1038/nmat4693]
  • [5] Chen JW, 2018, NAT CHEM, V10, P132, DOI [10.1038/nchem.2887, 10.1038/NCHEM.2887]
  • [6] Molecular mechanisms of muscular dystrophies: old and new players
    Davies, Kay E.
    Nowak, Kristen J.
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2006, 7 (10) : 762 - 773
  • [7] Athermal photofluidization of glasses
    Fang, G. J.
    Maclennan, J. E.
    Yi, Y.
    Glaser, M. A.
    Farrow, M.
    Korblova, E.
    Walba, D. M.
    Furtak, T. E.
    Clark, N. A.
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [8] Making waves in a photoactive polymer film
    Gelebart, Anne Helene
    Mulder, Dirk Jan
    Varga, Michael
    Konya, Andrew
    Vantomme, Ghislaine
    Meijer, E. W.
    Selinger, Robin L. B.
    Broer, Dirk J.
    [J]. NATURE, 2017, 546 (7660) : 632 - +
  • [9] Luminescent distyrylbenzenes: tailoring molecular structure and crystalline morphology
    Gierschner, Johannes
    Park, Soo Young
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2013, 1 (37) : 5818 - 5832
  • [10] The evolution of mechanical actuation: from conventional actuators to artificial muscles
    Greco, Carlo
    Kotak, Parth
    Pagnotta, Leonardo
    Lamuta, Caterina
    [J]. INTERNATIONAL MATERIALS REVIEWS, 2022, 67 (06) : 575 - 619