Modules with finite reducing Gorenstein dimension

被引:1
作者
Araya, Tokuji [1 ]
Celikbas, Olgur [2 ]
Cook, Jesse [2 ]
Kobayashi, Toshinori [3 ]
机构
[1] Okayama Univ Sci, Fac Sci, Dept Appl Sci, Ridaicho,Kita ku, Okayama 7000005, Japan
[2] West Virginia Univ, Sch Math & Data Sci, Morgantown, WV 26506 USA
[3] Meiji Univ, Sch Sci & Technol, 1 1 1 Higashi Mita, Tama ku, Kawasaki, Kanagawa 2148571, Japan
来源
BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY | 2024年 / 65卷 / 02期
关键词
Gorenstein dimension; Reducing dimensions; Injective dimension; HOMOLOGICAL DIMENSIONS;
D O I
10.1007/s13366-023-00687-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If M is a nonzero finitely generated module over a commutative Noetherian local ring R such that M has finite injective dimension and finite Gorenstein dimension, then it follows from a result of Holm that M has finite projective dimension, and hence a result of Foxby implies that R is Gorenstein. We prove that the same conclusion holds for certain nonzero finitely generated modules that have finite injective dimension and finite reducing Gorenstein dimension, where the reducing Gorenstein dimension is a finer invariant than the classical Gorenstein dimension, in general. Along the way, we also prove new results, independent of the reducing dimensions, concerning modules of finite Gorenstein dimension.
引用
收藏
页码:279 / 290
页数:12
相关论文
共 18 条
[1]   ON REDUCING HOMOLOGICAL DIMENSIONS OVER NOETHERIAN RINGS [J].
Araya, Tokuji ;
Takahashi, Ryo .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (02) :469-480
[2]   Reducing invariants and total reflexivity [J].
Araya, Tokuji ;
Celikbas, Olgur .
ILLINOIS JOURNAL OF MATHEMATICS, 2020, 64 (02) :169-184
[3]  
AUSLANDE.M, 1969, MEM AM MATH SOC, P1
[4]  
Auslander Maurice., 1989, M M SOC MATH FRANCE, P5
[5]  
Avramov LL, 1998, PROG MATH, V166, P1
[6]   Modules with reducible complexity [J].
Bergh, Petter Andreas .
JOURNAL OF ALGEBRA, 2007, 310 (01) :132-147
[7]   MODULES WITH REDUCIBLE COMPLEXITY, II [J].
Bergh, Petter Andreas .
COMMUNICATIONS IN ALGEBRA, 2009, 37 (06) :1908-1920
[8]  
Bruns W., 1993, Cohen-Macaulay rings, V8
[9]  
Christensen LW., 2000, Gorenstein Dimensions, DOI DOI 10.1007/BFB0103980
[10]   Classification of Resolving Subcategories and Grade Consistent Functions [J].
Dao, Hailong ;
Takahashi, Ryo .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (01) :119-149