Normalized solutions to the Kirchhoff equation with L2-subcritical or critical nonlinearities in R2

被引:3
作者
Hu, Jiaqing [1 ]
Mao, Anmin [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Shandong 273165, Peoples R China
基金
中国国家自然科学基金;
关键词
Normalized solution; Kirchhoff equation; Minimizing method; POSITIVE SOLUTIONS; EXISTENCE; GROWTH;
D O I
10.1007/s13226-023-00383-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the existence of normalized solutions to the Kirchhoff equation with L-2- subcritical or critical nonlinearities - (a + b integral R-2 |& nabla;u|(2)dx) delta u = lambda u + |u|(p-2)u + mu|u|(q-2)u in R-2,where a, b, mu > 0, 2 < q < p <= 6. By minimizing methods and the concentration compactness principle, we prove the existence and nonexistence of normalized solutions when (p, q) belongs to a certain domain in R-2, and discuss how mu affects the existence of normalized solutions. Our main results may be illustrated by the red areas and green areas shown in Figure 1. Our results partially extend the results of Soave (J. Differ. Equ. 2020).
引用
收藏
页码:508 / 512
页数:5
相关论文
共 14 条
[1]   On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in RN [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (03) :1288-1311
[2]   Scaling properties of functionals and existence of constrained minimizers [J].
Bellazzini, Jacopo ;
Siciliano, Gaetano .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (09) :2486-2507
[3]   Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument [J].
Figueiredo, Giovany M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (02) :706-713
[4]   Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3 [J].
He, Xiaoming ;
Zou, Wenming .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) :1813-1834
[5]  
Li G., ARXIV
[6]   Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in R3 [J].
Li, Gongbao ;
Ye, Hongyu .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (02) :566-600
[7]  
Lions J-L., 1978, N HOLLAND MATH STUD, V30, P284
[8]  
LIONS PL, 1984, ANN I H POINCARE-AN, V1, P109
[9]   Sign-changing and multiple solutions of Kirchhoff type problems without the PS condition [J].
Mao, Anmin ;
Zhang, Zhitao .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (03) :1275-1287
[10]   Normalized ground states for the NLS equation with combined nonlinearities [J].
Soave, Nicola .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (09) :6941-6987