Counterdiabatic Optimized Local Driving

被引:30
作者
Cepaite, Ieva [1 ,2 ]
Polkovnikov, Anatoli [3 ]
Daley, Andrew J. [1 ,2 ]
Duncan, Callum W. [1 ,2 ]
机构
[1] SUPA, Dept Phys, Glasgow G4 0NG, Scotland
[2] Univ Strathclyde, Glasgow G4 0NG, Scotland
[3] Boston Univ, Dept Phys, Boston, MA 02215 USA
来源
PRX QUANTUM | 2023年 / 4卷 / 01期
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
QUANTUM; ALGORITHM;
D O I
10.1103/PRXQuantum.4.010312
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Adiabatic protocols are employed across a variety of quantum technologies, from implementing state preparation and individual operations that are building blocks of larger devices, to higher-level protocols in quantum annealing and adiabatic quantum computation. The problem of speeding up these processes has garnered a large amount of interest, resulting in a menagerie of approaches, most notably quantum optimal control and shortcuts to adiabaticity. The two approaches are complementary: optimal control manipulates control fields to steer the dynamics in the minimum allowed time, while shortcuts to adia-baticity aims to retain the adiabatic condition upon speed-up. We outline a new method that combines the two methodologies and takes advantage of the strengths of each. The new technique improves upon approximate local counterdiabatic driving with the addition of time-dependent control fields. We refer to this new method as counterdiabatic optimized local driving (COLD) and we show that it can result in a substantial improvement when applied to annealing protocols, state preparation schemes, entanglement generation, and population transfer on a lattice. We also demonstrate a new approach to the optimization of control fields that does not require access to the wave function or the computation of system dynamics. COLD can be enhanced with existing advanced optimal control methods and we explore this using the chopped randomized basis method and gradient ascent pulse engineering.
引用
收藏
页数:21
相关论文
共 62 条
  • [1] The quantum technologies roadmap: a European community view
    Acin, Antonio
    Bloch, Immanuel
    Buhrman, Harry
    Calarco, Tommaso
    Eichler, Christopher
    Eisert, Jens
    Esteve, Daniel
    Gisin, Nicolas
    Glaser, Steffen J.
    Jelezko, Fedor
    Kuhr, Stefan
    Lewenstein, Maciej
    Riedel, Max F.
    Schmidt, Piet O.
    Thew, Rob
    Wallraff, Andreas
    Walmsley, Ian
    Wilhelm, Frank K.
    [J]. NEW JOURNAL OF PHYSICS, 2018, 20
  • [2] [Anonymous], US, DOI [10.15129/d060ba54-88b8-4fa2-8214-41ae83b60b9f, DOI 10.15129/D060BA54-88B8-4FA2-8214-41AE83B60B9F]
  • [3] Speeding up quantum perceptron via shortcuts to adiabaticity
    Ban, Yue
    Chen, Xi
    Torrontegui, E.
    Solano, E.
    Casanova, J.
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [4] Ultracold dipolar gases -: a challenge for experiments and theory
    Baranov, M
    Dobrek, L
    Góral, K
    Santos, L
    Lewenstein, M
    [J]. PHYSICA SCRIPTA, 2002, T102 : 74 - 81
  • [5] Transitionless quantum driving
    Berry, M. V.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (36)
  • [6] Control of quantum phenomena: past, present and future
    Brif, Constantin
    Chakrabarti, Raj
    Rabitz, Herschel
    [J]. NEW JOURNAL OF PHYSICS, 2010, 12
  • [7] Reinforcement Learning in Different Phases of Quantum Control
    Bukov, Marin
    Day, Alexandre G. R.
    Sels, Dries
    Weinberg, Phillip
    Polkovnikov, Anatoli
    Mehta, Pankaj
    [J]. PHYSICAL REVIEW X, 2018, 8 (03):
  • [8] Shortcut to Adiabaticity in the Lipkin-Meshkov-Glick Model
    Campbell, Steve
    De Chiara, Gabriele
    Paternostro, Mauro
    Palma, G. Massimo
    Fazio, Rosario
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (17)
  • [9] Chopped random-basis quantum optimization
    Caneva, Tommaso
    Calarco, Tommaso
    Montangero, Simone
    [J]. PHYSICAL REVIEW A, 2011, 84 (02):
  • [10] Speeding up critical system dynamics through optimized evolution
    Caneva, Tommaso
    Calarco, Tommaso
    Fazio, Rosario
    Santoro, Giuseppe E.
    Montangero, Simone
    [J]. PHYSICAL REVIEW A, 2011, 84 (01):