Screening cell-cell communication in spatial transcriptomics via collective optimal transport

被引:128
作者
Cang, Zixuan [1 ,2 ]
Zhao, Yanxiang [3 ]
Almet, Axel A. A. [4 ,5 ]
Stabell, Adam [5 ,6 ]
Ramos, Raul [5 ,6 ]
Plikus, Maksim V. V. [5 ,6 ]
Atwood, Scott X. X. [5 ,6 ]
Nie, Qing [4 ,5 ,6 ]
机构
[1] North Carolina State Univ, Dept Math, Raleigh, NC USA
[2] North Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC USA
[3] George Washington Univ, Dept Math, Washington, DC USA
[4] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[5] Univ Calif Irvine, NSF Simons Ctr Multiscale Cell Fate Res, Irvine, CA 92697 USA
[6] Univ Calif Irvine, Dept Dev & Cell Biol, Irvine, CA 92697 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
GENE-EXPRESSION; RECONSTRUCTION; MORPHOGENESIS; ARCHITECTURE; EXPANSION; SEQ;
D O I
10.1038/s41592-022-01728-4
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Spatial transcriptomic technologies and spatially annotated single-cell RNA sequencing datasets provide unprecedented opportunities to dissect cell-cell communication (CCC). However, incorporation of the spatial information and complex biochemical processes required in the reconstruction of CCC remains a major challenge. Here, we present COMMOT (COMMunication analysis by Optimal Transport) to infer CCC in spatial transcriptomics, which accounts for the competition between different ligand and receptor species as well as spatial distances between cells. A collective optimal transport method is developed to handle complex molecular interactions and spatial constraints. Furthermore, we introduce downstream analysis tools to infer spatial signaling directionality and genes regulated by signaling using machine learning models. We apply COMMOT to simulation data and eight spatial datasets acquired with five different technologies to show its effectiveness and robustness in identifying spatial CCC in data with varying spatial resolutions and gene coverages. Finally, COMMOT identifies new CCCs during skin morphogenesis in a case study of human epidermal development. This work presents a computational framework, COMMOT, to spatially infer cell-cell communication from transcriptomics data based on a variant of optimal transport (OT).
引用
收藏
页码:218 / +
页数:25
相关论文
共 72 条
  • [1] Distinct Regulatory Programs Control the Latent Regenerative Potential of Dermal Fibroblasts during Wound Healing
    Abbasi, Sepideh
    Sinha, Sarthak
    Labit, Elodie
    Rosin, Nicole L.
    Yoon, Grace
    Rahmani, Waleed
    Jaffer, Arzina
    Sharma, Nilesh
    Hagner, Andrew
    Shah, Prajay
    Arora, Rohit
    Yoon, Jessica
    Islam, Anowara
    Uchida, Aya
    Chang, Chih Kai
    Stratton, Jo Anne
    Scott, R. Wilder
    Rossi, Fabio Mv
    Underhill, T. Michael
    Biernaskie, Jeff
    [J]. CELL STEM CELL, 2020, 27 (03) : 396 - +
  • [2] The landscape of cell-cell communication through single-cell transcriptomics
    Almet, Axel A.
    Cang, Zixuan
    Jin, Suoqin
    Nie, Qing
    [J]. CURRENT OPINION IN SYSTEMS BIOLOGY, 2021, 26 : 12 - 23
  • [3] Inferring a spatial code of cell-cell interactions across a whole animal body
    Armingol, Erick
    Ghaddar, Abbas
    Joshi, Chintan J.
    Baghdassarian, Hratch
    Shamie, Isaac
    Chan, Jason
    Her, Hsuan-Lin
    Berhanu, Samuel
    Dar, Anushka
    Rodriguez-Armstrong, Fabiola
    Yang, Olivia
    O'Rourke, Eyleen J.
    Lewis, Nathan E.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (11)
  • [4] Deciphering cell-cell interactions and communication from gene expression
    Armingol, Erick
    Officer, Adam
    Harismendy, Olivier
    Lewis, Nathan E.
    [J]. NATURE REVIEWS GENETICS, 2021, 22 (02) : 71 - 88
  • [5] Modeling Cell-Cell Interactions from Spatial Molecular Data with Spatial Variance Component Analysis
    Arnol, Damien
    Schapiro, Denis
    Bodenmiller, Bernd
    Saez-Rodriguez, Julio
    Stegle, Oliver
    [J]. CELL REPORTS, 2019, 29 (01): : 202 - +
  • [6] Activin controls skin morphogenesis and wound repair predominantly via stromal cells and in a concentration-dependent manner via keratinocytes
    Bamberger, C
    Schärer, A
    Antsiferova, M
    Tychsen, B
    Pankow, S
    Müller, M
    Rülicke, T
    Paus, R
    Werner, S
    [J]. AMERICAN JOURNAL OF PATHOLOGY, 2005, 167 (03) : 733 - 747
  • [7] Identify, quantify and characterize cellular communication from single-cell RNA sequencing data with scSeqComm
    Baruzzo, Giacomo
    Cesaro, Giulia
    Di Camillo, Barbara
    [J]. BIOINFORMATICS, 2022, 38 (07) : 1920 - 1929
  • [8] Insulin-Like Growth Factor 1 Receptor Drives Hepatocellular Carcinoma Growth and Invasion by Activating Stat3-Midkine-Stat3 Loop
    Bie, Caiqun
    Chen, Yanfang
    Tang, Huijun
    Li, Qing
    Zhong, Lu
    Peng, Xiaojuan
    Shi, Ying
    Lin, Junqin
    Lai, Junlong
    Wu, Shenglan
    Tang, Shaohui
    [J]. DIGESTIVE DISEASES AND SCIENCES, 2022, 67 (02) : 569 - 584
  • [9] Perturbed Wnt signaling leads to neuronal migration delay, altered interhemispheric connections and impaired social behavior
    Bocchi, Riccardo
    Egervari, Kristof
    Carol-Perdiguer, Laura
    Viale, Beatrice
    Quairiaux, Charles
    De Roo, Mathias
    Boitard, Michael
    Oskouie, Suzanne
    Salmon, Patrick
    Kiss, Jozsef Z.
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [10] SPOT Sliced Partial Optimal Transport
    Bonneel, Nicolas
    Coeurjolly, David
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (04):