Robust trajectory tracking of quadrotors using adaptive radial basis function network compensation control

被引:3
作者
Bouaiss, Oussama [1 ]
Mechgoug, Raihane [1 ]
Taleb-Ahmed, Abdelmalik [2 ]
Brikel, Ala Eddine [1 ]
机构
[1] Univ Biskra, Dept Elect Engn, LESIA Lab, Biskra, Algeria
[2] Univ Lille, Univ Polytech Hauts France, Inst Elect Microelect & Nanotechnol IEMN, UMR 8520,CNRS, F-59313 Valenciennes, France
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2024年 / 361卷 / 03期
关键词
Neural networks; Radial Basis Functions; Disturbance compensation; Kalman filter; Robust adaptive control; STATE ESTIMATION; UAV; OPTIMIZATION;
D O I
10.1016/j.jfranklin.2023.12.045
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Radial Basis Function Neural Networks (RBFNN) methods have gained incredible efficiency and applicability in control. This paper presents a nested control strategy for robust trajectory tracking of a quadrotor using adaptive RBF compensation and NN -supervised control embedded with Integrator BackStepping (IBS). The approach addresses the robustness in the presence of modeling uncertainties, sensing noise, and bounded disturbances. The control design is derived from the decentralized inverse dynamics, using adaptive RBFNN for outer -loop disturbance approximation and compensation. In conjunction with an Inner -loop supervised control that stabilizes the quadrotor attitude, preventing initial instability during NN convergence. In addition, an adaptive Extended Kalman Filter (EKF) attenuates noisy signals. Simulation results demonstrate strong adaptability to changes in model parameters, and superior performance when compared to Proportional Integral Derivative (PID), Integrator BackStepping (IBS), and offline decentralized Multi -Layer Perceptron (MLP) algorithms, in terms of parameter convergence, disturbance compensation control, and noise attenuation.
引用
收藏
页码:1167 / 1185
页数:19
相关论文
共 39 条
[1]   Radial basis function neural network-based face recognition using firefly algorithm [J].
Agarwal, Vandana ;
Bhanot, Surekha .
NEURAL COMPUTING & APPLICATIONS, 2018, 30 (08) :2643-2660
[2]  
Vallejo-Alarcón MA, 2020, CONTROL ENG APPL INF, V22, P51
[3]   Quadrotor UAV state estimation based on High-Degree Cubature Kalman filter [J].
Benzerrouk, Hamza ;
Nebylov, Alexander ;
Salhi, Hassen .
IFAC PAPERSONLINE, 2016, 49 (17) :349-354
[4]   Robust nonlinear control of a variable-pitch quadrotor with the flip maneuver [J].
Bhargavapuri, Mahathi ;
Sahoo, Soumya Ranjan ;
Kothari, Mangal ;
Abhishek .
CONTROL ENGINEERING PRACTICE, 2019, 87 :26-42
[5]  
Bisheban M, 2018, IEEE DECIS CONTR P, P2816, DOI 10.1109/CDC.2018.8619390
[6]  
Bouaiss Oussama, 2020, 2020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP), P340, DOI 10.1109/CCSSP49278.2020.9151687
[7]  
Bouaiss O., 2022, Iran. J. Sci. Technol., Trans. Electr. Eng., P1
[8]   Visual soft landing of an autonomous quadrotor on a moving pad using a combined fuzzy velocity control with model predictive control [J].
Bouaiss, Oussama ;
Mechgoug, Raihane ;
Taleb-Ahmed, Abdelmalik .
SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (01) :21-30
[9]   Quadrotor waypoint-tracking control under exogenous disturbances based on equivalent-input-disturbance approach [J].
Cai, Wenjing ;
She, Jinhua ;
Wu, Min ;
Ohyama, Yasuhiro .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2020, 357 (08) :4709-4741
[10]   Quadrotor trajectory tracking and obstacle avoidance by chaotic grey wolf optimization-based active disturbance rejection control [J].
Cai, Zhihao ;
Lou, Jiang ;
Zhao, Jiang ;
Wu, Kun ;
Liu, Ningjun ;
Wang, Ying Xun .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 128 :636-654