The Segment Anything Model (SAM) for accelerating the smart farming revolution

被引:30
作者
Carraro, Alberto [1 ]
Sozzi, Marco [1 ]
Marinello, Francesco [1 ]
机构
[1] Univ Padua, TESAF, Viale Univ 16, I-35020 Legnaro, Italy
来源
SMART AGRICULTURAL TECHNOLOGY | 2023年 / 6卷
关键词
Precision agriculture; Segment Anything Model (SAM); Instance segmentation; Computer vision;
D O I
10.1016/j.atech.2023.100367
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Precision agriculture uses accurate identification and mapping of crop features by automated mechanisms. Using computer vision techniques implemented by supervised deep learning systems to solve many precision agricultural problems necessitates large-scale data collection and prolonged ground truth annotation by humans. The so-called foundation models in Artificial Intelligence (AI) are becoming increasingly significant. Meta AI Research is working on a project called Segment Anything to provide a base model for image segmentation. It can accomplish zero-shot generalisation to strange objects and images without additional training. This study evaluates the performance of the Segment Anything Model (SAM) for the problem of semantic segmentation of objects in the context of precision agriculture.
引用
收藏
页数:11
相关论文
共 48 条
[1]  
Baccouch Wafa, 2023, Procedia Computer Science, P1089, DOI 10.1016/j.procs.2023.01.388
[2]  
Badrinarayanan V., 2016, P IEEE C COMPUTER VI, P1843
[3]   Semantic object classes in video: A high-definition ground truth database [J].
Brostow, Gabriel J. ;
Fauqueur, Julien ;
Cipolla, Roberto .
PATTERN RECOGNITION LETTERS, 2009, 30 (02) :88-97
[4]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[5]  
Codella N.C., 2019, IEEE Trans. Med. Imaging, V38, P285
[6]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[7]   DeepGlobe 2018: A Challenge to Parse the Earth through Satellite Images [J].
Demir, Ilke ;
Koperski, Krzysztof ;
Lindenbaum, David ;
Pang, Guan ;
Huang, Jing ;
Bast, Saikat ;
Hughes, Forest ;
Tuia, Devis ;
Raskar, Ramesh .
PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, :172-181
[8]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[9]  
Deng RN, 2023, Arxiv, DOI arXiv:2304.04155
[10]  
Dosovitskiy A., 2021, P INT C LEARN REPR, DOI DOI 10.48550/ARXIV.2010.11929