SL2 representations and relative property (T)

被引:0
|
作者
Zhang, Zezhou [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, MOE, Beijing 100875, Peoples R China
关键词
Relative property (T); Admissible lattices; Kac-Moody group; Expander graphs; Spectral gap; sl2; CHEVALLEY-GROUPS; WEYL MODULES; SPECTRAL GAP; II1; FACTORS; KAZHDAN; SUBGROUPS; PRODUCTS;
D O I
10.1016/j.jalgebra.2023.10.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate relative property (T) of Kazhdan-Margulis for (SL2(R) alpha Rn, Rn), mainly where R is a discrete finitely generated commutative ring. The action of SL2(R) on Rn is defined through admissible lattices of the irreducible representations of sl2(C). Both positive and negative results are obtained. Applications of these results will be given, including the establishment of property (T) for certain KacMoody type groups over commutative rings. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:281 / 326
页数:46
相关论文
共 50 条
  • [1] Character formulae and a realization of tilting modules for sl2[t]
    Bennett, Matthew
    Chari, Vyjayanthi
    JOURNAL OF ALGEBRA, 2015, 441 : 216 - 242
  • [2] Random walks on SL2(C): spectral gap and limit theorems
    Dinh, Tien-Cuong
    Kaufmann, Lucas
    Wu, Hao
    PROBABILITY THEORY AND RELATED FIELDS, 2023, 186 (3-4) : 877 - 955
  • [3] Square Integrable Representations of Reductive Lie Groups with Admissible Restriction to SL2(R)
    Duflo, Michel
    Galina, Esther
    Vargas, Jorge A.
    JOURNAL OF LIE THEORY, 2017, 27 (04) : 1033 - 1056
  • [4] Explicit Growth and Expansion for SL2
    Kowalski, Emmanuel
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (24) : 5645 - 5708
  • [5] ON RELATIVE PROPERTY (T) AND HAAGERUP'S PROPERTY
    Chifan, Ionut
    Ioana, Adrian
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (12) : 6407 - 6420
  • [6] Bounding and unbounding higher extensions for SL2
    Erdmann, Karin
    Hannabuss, Keith C.
    Parker, Alison E.
    JOURNAL OF ALGEBRA, 2013, 389 : 98 - 118
  • [7] Groups of Lie type as products of SL2 subgroups
    Liebeck, Martin W.
    Nikolov, Nikolay
    Shalev, Aner
    JOURNAL OF ALGEBRA, 2011, 326 (01) : 201 - 207
  • [8] Ferromagnetic Ordering of Energy Levels for Uq(sl2) Symmetric Spin Chains
    Nachtergaele, Bruno
    Ng, Stephen
    Starr, Shannon
    LETTERS IN MATHEMATICAL PHYSICS, 2012, 100 (03) : 327 - 356
  • [9] 2-FUSION SYSTEMS WITH COMPONENTS OF TYPE SL2(q)
    Welz, Matthew
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (08) : 3313 - 3329
  • [10] Normalizers of congruence groups in SL2(R) and automorphisms of lattices
    Zemel, Shaul
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (05) : 1275 - 1300