LONG TIME SOLUTIONS FOR QUASILINEAR HAMILTONIAN PERTURBATIONS OF SCHRODINGER AND KLEIN-GORDON EQUATIONS ON TORI

被引:8
作者
Feola, Roberto [1 ]
Grebert, Benoit [2 ]
Iandoli, Felice [3 ]
机构
[1] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy
[2] Univ Nantes, Lab Math Jean Leray, UMR CNRS 6629, Nantes, France
[3] Univ Calabria, Dipartimento Matemat & Informat, Arcavacata Di Rende, Italy
基金
欧洲研究理事会;
关键词
quasilinear equations; paradifferential calculus; energy estimates; small divisors; LOCAL WELL-POSEDNESS; SMALL CAUCHY DATA; BIRKHOFF NORMAL-FORM; PERIODIC-SOLUTIONS; GLOBAL EXISTENCE; NLS;
D O I
10.2140/apde.2023.16.1133
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider quasilinear, Hamiltonian perturbations of the cubic Schrodinger and of the cubic (derivative) Klein-Gordon equations on the d-dimensional torus. If is an element of << 1 is the size of the initial datum, we prove that the lifespan of solutions is strictly larger than the local existence time c(-2). More precisely, concerning the Schrodinger equation we show that the lifespan is at least of order O(is an element of(-4)), and in the Klein-Gordon case we prove that the solutions exist at least for a time of order O(is an element of(-8/3-)) as soon as d >= 3. Regarding the Klein-Gordon equation, our result presents novelties also in the case of semilinear perturbations: we show that the lifespan is at least of order O(is an element of(-10/3-)), improving, for cubic nonlinearities and d >= 4, the general results of Delort (J. Anal. Math. 107 (2009), 161-194) and Fang and Zhang (J. Differential Equations 249:1 (2010), 151-179).
引用
收藏
页码:1133 / 1203
页数:71
相关论文
共 49 条
[1]  
[Anonymous], 2008, CRM Ser
[2]   Controllability of quasi-linear Hamiltonian NLS equations [J].
Baldi, Pietro ;
Haus, Emanuele ;
Montalto, Riccardo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (03) :1786-1840
[3]   Periodic solutions of fully nonlinear autonomous equations of Benjamin-Ono type [J].
Baldi, Pietro .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (01) :33-77
[4]   Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on zoll manifolds [J].
Bambusi, D. ;
Delort, J.-M. ;
Grebert, B. ;
Szeftel, J. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (11) :1665-1690
[5]   Birkhoff normal form for partial differential equations with tame modulus [J].
Bambusi, D. ;
Grebert, B. .
DUKE MATHEMATICAL JOURNAL, 2006, 135 (03) :507-567
[6]   Birkhoff normal form for some nonlinear PDEs [J].
Bambusi, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 234 (02) :253-285
[7]   LONG TIME BEHAVIOR OF THE SOLUTIONS OF NLW ON THE d-DIMENSIONAL TORUS [J].
Bernier, Joackim ;
Faou, Erwan ;
Grebert, Benoit .
FORUM OF MATHEMATICS SIGMA, 2020, 8
[8]  
Berti M, 2021, J DYN DIFFER EQU, V33, P1475, DOI 10.1007/s10884-020-09927-3
[9]   Quadratic Life Span of Periodic Gravity-capillary Water Waves [J].
Berti, M. ;
Feola, R. ;
Franzoi, L. .
WATER WAVES, 2021, 3 (01) :85-115
[10]  
Berti M., 2018, Lecture Notes of the Unione Matematica Italiana, V24