Systematic review: fluid biomarkers and machine learning methods to improve the diagnosis from mild cognitive impairment to Alzheimer's disease

被引:22
作者
Blanco, Kevin [1 ]
Salcidua, Stefanny [2 ,3 ]
Orellana, Paulina [1 ,2 ]
Sauma-Perez, Tania [2 ]
Leon, Tomas [4 ,5 ,6 ]
Steinmetz, Lorena Cecilia Lopez [2 ,7 ,8 ,9 ]
Ibanez, Agustin [2 ,4 ,10 ,11 ,12 ]
Duran-Aniotz, Claudia [1 ,2 ]
de la Cruz, Rolando [2 ,3 ,13 ]
机构
[1] Univ Adolfo Ibanez, Ctr Social & Cognit Neurosci CSCN, Sch Psychol, Diagonal Torres 2640, Santiago, Chile
[2] Univ Adolfo Ibanez, Latin Amer Inst Brain Hlth BrainLat, Santiago, Chile
[3] Univ Adolfo Ibanez, Fac Engn & Sci, Diagonal Torres 2700,Bldg D, Santiago, Chile
[4] Trinity Coll Dublin, Global Brain Hlth Inst, Dublin, Ireland
[5] Univ Chile, Hosp del Salvador, Memory & Neuropsychiat Ctr CMYN, Neurol Dept, Santiago, Chile
[6] Univ Chile, Fac Med, Santiago, Chile
[7] Tech Univ Berlin, Berlin, Germany
[8] Univ Nacl Cordoba UNC, Inst Invest Psicol IIPsi, Cordoba, Argentina
[9] Consejo Nacl Invest Cient & Tecn CONICET, Cordoba, Argentina
[10] Univ Calif San Francisco, Global Brain Hlth Inst, San Francisco, CA USA
[11] Univ San Andres, Cognit Neurosci Ctr CNC, Buenos Aires, DF, Argentina
[12] Natl Sci & Tech Res Council CONICET, Buenos Aires, DF, Argentina
[13] ANID Technol Ctr DO210001, Data Observ Fdn, Santiago, Chile
基金
美国国家卫生研究院;
关键词
Mild cognitive impairment; Alzheimer's disease; Fluid biomarker; Machine learning; Artificial intelligence; POSITRON-EMISSION-TOMOGRAPHY; PLASMA NEUROFILAMENT LIGHT; CEREBROSPINAL-FLUID; PHOSPHORYLATED TAU; RISK-FACTORS; DEMENTIA; BLOOD; IDENTIFICATION; PROGRESSION; ASSOCIATION;
D O I
10.1186/s13195-023-01304-8
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Mild cognitive impairment (MCI) is often considered an early stage of dementia, with estimated rates of progression to dementia up to 80-90% after approximately 6 years from the initial diagnosis. Diagnosis of cognitive impairment in dementia is typically based on clinical evaluation, neuropsychological assessments, cerebrospinal fluid (CSF) biomarkers, and neuroimaging. The main goal of diagnosing MCI is to determine its cause, particularly whether it is due to Alzheimer's disease (AD). However, only a limited percentage of the population has access to etiological confirmation, which has led to the emergence of peripheral fluid biomarkers as a diagnostic tool for dementias, including MCI due to AD. Recent advances in biofluid assays have enabled the use of sophisticated statistical models and multimodal machine learning (ML) algorithms for the diagnosis of MCI based on fluid biomarkers from CSF, peripheral blood, and saliva, among others. This approach has shown promise for identifying specific causes of MCI, including AD. After a PRISMA analysis, 29 articles revealed a trend towards using multimodal algorithms that incorporate additional biomarkers such as neuroimaging, neuropsychological tests, and genetic information. Particularly, neuroimaging is commonly used in conjunction with fluid biomarkers for both cross-sectional and longitudinal studies. Our systematic review suggests that cost-effective longitudinal multimodal monitoring data, representative of diverse cultural populations and utilizing white-box ML algorithms, could be a valuable contribution to the development of diagnostic models for AD due to MCI. Clinical assessment and biomarkers, together with ML techniques, could prove pivotal in improving diagnostic tools for MCI due to AD.
引用
收藏
页数:16
相关论文
共 149 条
[1]   A Conformation Variant of p53 Combined with Machine Learning Identifies Alzheimer Disease in Preclinical and Prodromal Stages [J].
Abate, Giulia ;
Vezzoli, Marika ;
Polito, Letizia ;
Guaita, Antonio ;
Albani, Diego ;
Marizzoni, Moira ;
Garrafa, Emirena ;
Marengoni, Alessandra ;
Forloni, Gianluigi ;
Frisoni, Giovanni B. ;
Cummings, Jeffrey L. ;
Memo, Maurizio ;
Uberti, Daniela .
JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (01) :1-16
[2]   Dementia in Latin America: Paving the way toward a regional action plan [J].
Alfredo Parra, Mario ;
Baez, Sandra ;
Sedeno, Lucas ;
Gonzalez Campo, Cecilia ;
Santamaria-Garcia, Hernando ;
Aprahamian, Ivan ;
Bertolucci, Paulo H. F. ;
Bustin, Julian ;
Camargos Bicalho, Maria Aparecida ;
Cano-Gutierrez, Carlos ;
Caramelli, Paulo ;
Chaves, Marcia L. F. ;
Cogram, Patricia ;
Beber, Barbara Costa ;
Court, Felipe A. ;
de Souza, Leonardo Cruz ;
Custodio, Nilton ;
Damian, Andres ;
de la Cruz, Myriam ;
Rodriguez, Roberta Diehl ;
Dozzi Brucki, Sonia Maria ;
Fajersztajn, Lais ;
Farias, Gonzalo A. ;
De Felice, Fernanda G. ;
Ferrari, Raffaele ;
de Oliveira, Fabricio Ferreira ;
Ferreira, Sergio T. ;
Ferretti, Ceres ;
Figueredo Balthazar, Marcio Luiz ;
Ferreira Frota, Norberto Anizio ;
Fuentes, Patricio ;
Garcia, Adolfo M. ;
Garcia, Patricia J. ;
de Gobbi Porto, Fabio Henrique ;
Duque Penailillo, Lissette ;
Willy Engler, Henry ;
Maier, Irene ;
Mata, Ignacio F. ;
Gonzalez-Billault, Christian ;
Lopez, Oscar L. ;
Morelli, Laura ;
Nitrini, Ricardo ;
Quiroz, Yakeel T. ;
Guerrero Barragan, Alejandra ;
Huepe, David ;
Pio, Fabricio Joao ;
Suemoto, Claudia Kimie ;
Kochhann, Renata ;
Kochen, Silvia ;
Kumfor, Fiona .
ALZHEIMERS & DEMENTIA, 2021, 17 (02) :295-313
[3]   2021 Alzheimer's disease facts and figures [J].
不详 .
ALZHEIMERS & DEMENTIA, 2021, 17 (03) :327-406
[4]  
[Ардила Альфредо Ardila Alfredo], 2020, [Вестник Российского университета дружбы народов. Серия: Психология и педагогика, Vestnik Rossiiskogo universiteta druzhby narodov. Seriya: Psikhologiya i pedagogika], V17, P64
[5]   Influence of tau PET, amyloid PET, and hippocampal volume on cognition in Alzheimer disease [J].
Aschenbrenner, Andrew J. ;
Gordon, Brian A. ;
Benzinger, Tammie L. S. ;
Morris, John C. ;
Hassenstab, Jason J. .
NEUROLOGY, 2018, 91 (09) :E859-E866
[6]   An update on blood-based biomarkers for non-Alzheimer neurodegenerative disorders [J].
Ashton, Nicholas J. ;
Hye, Abdul ;
Rajkumar, Anto P. ;
Leuzy, Antoine ;
Snowden, Stuart ;
Suarez-Calvet, Marc ;
Karikari, Thomas K. ;
Scholl, Michael ;
La Joie, Renaud ;
Rabinovici, Gil D. ;
Hoglund, Kina ;
Ballard, Clive ;
Hortobagyi, Tibor ;
Svenningsson, Per ;
Blennow, Kaj ;
Zetterberg, Henrik ;
Aarsland, Dag .
NATURE REVIEWS NEUROLOGY, 2020, 16 (05) :265-284
[7]   Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework [J].
Atkinson, AJ ;
Colburn, WA ;
DeGruttola, VG ;
DeMets, DL ;
Downing, GJ ;
Hoth, DF ;
Oates, JA ;
Peck, CC ;
Schooley, RT ;
Spilker, BA ;
Woodcock, J ;
Zeger, SL .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2001, 69 (03) :89-95
[8]   Age and sex impact plasma NFL and t-Tau trajectories in individuals with subjective memory complaints: a 3-year follow-up study [J].
Baldacci, Filippo ;
Lista, Simone ;
Manca, Maria Laura ;
Chiesa, Patrizia A. ;
Cavedo, Enrica ;
Lemercier, Pablo ;
Zetterberg, Henrik ;
Blennow, Kaj ;
Habert, Marie-Odile ;
Potier, Marie Claude ;
Dubois, Bruno ;
Vergallo, Andrea ;
Hampel, Harald .
ALZHEIMERS RESEARCH & THERAPY, 2020, 12 (01)
[9]   Evaluation of Brain Tortuosity Measurement for the Automatic Multimodal Classification of Subjects with Alzheimer's Disease [J].
Barbara-Morales, Eduardo ;
Perez-Gonzalez, Jorge ;
Rojas-Saavedra, Karla C. ;
Medina-Banuelos, Veronica .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2020, 2020
[10]   Evaluating the reliability of neurocognitive biomarkers of neurodegenerative diseases across countries: A machine learning approach [J].
Belen Bachli, M. ;
Sedeno, Lucas ;
Ochab, Jeremi K. ;
Piguet, Olivier ;
Kumfor, Fiona ;
Reyes, Pablo ;
Torralva, Teresa ;
Roca, Maria ;
Felipe Cardona, Juan ;
Gonzalez Campo, Cecilia ;
Herrera, Eduar ;
Slachevsky, Andrea ;
Matallana, Diana ;
Manes, Facundo ;
Garcia, Adolfo M. ;
Ibanez, Agustin ;
Chialvo, Dante R. .
NEUROIMAGE, 2020, 208