Karhunen-Loeve expansion based on an analytical solution over a bounding box domain

被引:3
作者
Basmaji, A. A. [1 ,2 ]
Dannert, M. M. [1 ]
Bensel, F. [1 ,2 ]
Fleury, R. M. N. [3 ]
Fau, A. [2 ,4 ]
Nackenhorst, U. [1 ,2 ]
机构
[1] Leibniz Univ Hannover, IBNM Inst Mech & Computat Mech, Appelstr 9A, D-30167 Hannover, Germany
[2] Leibniz Univ Hannover, Int Res Training Grp IRTG 2657, Appelstr 11-11a, D-30167 Hannover, Germany
[3] ASML Holding NV, Waldkraiburger Str 5, D-12347 Berlin, Germany
[4] Univ Paris Saclay, Cent Supelec, CNRS, LMPS Lab Mech Paris Saclay,ENS Paris Saclay, F-91190 Gif sur Yvette, France
关键词
Random field discretisation; Karhunen-Loeve expansion; Integral eigenvalue problem; Analytical solution; Stochastic finite element method; Bounding box approach; Axis-aligned bounding box; RANDOM-FIELDS; GALERKIN METHOD; DISCRETIZATION; APPROXIMATION; SIMULATION;
D O I
10.1016/j.probengmech.2023.103519
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper explores the accuracy and the efficiency of analytical solution of Fredholm integral equation to represent a random field on complex geometry. Because no analytical solution is available for arbitrary domains, it is proposed to use the analytical solution on simple bounding domains that enclose complex two -or three-dimensional geometries. It is a simple, accurate and robust approach for discretising a random field. The effect of the size of the bounding box on the resulting random field variance is investigated carefully and compared with the numerical solution given by the finite element method. The error variance is particularly localised near to the support domain boundary. Therefore, it is suggested to expand the bounding domain. This paper proposes a calibration of the correlation length to the ratio of the domain to maintain the convergence rate and the variance accuracy of the KLE without enlarging the stochastic dimension.
引用
收藏
页数:10
相关论文
共 35 条
  • [1] Efficiently approximating the minimum-volume bounding box of a point set in three dimensions
    Barequet, G
    Har-Peled, S
    [J]. JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2001, 38 (01): : 91 - 109
  • [2] Anisotropic multi-element polynomial chaos expansion for high-dimensional non-linear structural problems
    Basmaji, A. A.
    Fau, A.
    Urrea-Quintero, J. H.
    Dannert, M. M.
    Voelsen, E.
    Nackenhorst, U.
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2022, 70
  • [3] Implementation of Karhunen-Loeve expansion using discontinuous Legendre polynomial based Galerkin approach
    Basmaji, A. A.
    Dannert, M. M.
    Nackenhorst, U.
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2022, 67
  • [4] Numerical methods for the discretization of random fields by means of the Karhunen-Loeve expansion
    Betz, Wolfgang
    Papaioannou, Iason
    Straub, Daniel
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 271 : 109 - 129
  • [5] A new formulation for the Karhunen-Loeve expansion
    Courmontagne, P
    [J]. SIGNAL PROCESSING, 1999, 79 (03) : 235 - 249
  • [6] Dannert Mona M., 2018, Proceedings in Applied Mathematics and Mechanics, V18, DOI 10.1002/pamm.201800114
  • [7] Imprecise random field analysis for non-linear concrete damage analysis
    Dannert, Mona M.
    Faes, Matthias G. R.
    Fleury, Rodolfo M. N.
    Fau, Amelie
    Nackenhorst, Udo
    Moens, David
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 150
  • [8] Der Kiureghian A., 2000, STOCHASTIC FINITE EL
  • [9] Fast random field generation with H-matrices
    Feischl, Michael
    Kuo, Frances Y.
    Sloan, Ian H.
    [J]. NUMERISCHE MATHEMATIK, 2018, 140 (03) : 639 - 676
  • [10] Fink F., 2015, Ph.D. thesis