A Graph Memory Neural Network for Sea Surface Temperature Prediction

被引:7
作者
Liang, Shuchen [1 ,2 ]
Zhao, Anming [1 ,2 ]
Qin, Mengjiao [1 ,2 ]
Hu, Linshu [1 ,2 ]
Wu, Sensen [1 ,2 ]
Du, Zhenhong [1 ,2 ]
Liu, Renyi [1 ,2 ]
机构
[1] Zhejiang Univ, Sch Earth Sci, 866 Yuhangtang Rd, Hangzhou 310058, Peoples R China
[2] Zhejiang Prov Key Lab Agr Resources & Environm, 866 Yuhangtang Rd, Hangzhou 310058, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
sea surface temperature; spatiotemporal prediction; deep learning; graph neural network; SST; MODEL;
D O I
10.3390/rs15143539
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Sea surface temperature (SST) is a key factor in the marine environment, and its accurate forecasting is important for climatic research, ecological preservation, and economic progression. Existing methods mostly rely on convolutional networks, which encounter difficulties in encoding irregular data. In this paper, allowing for comprehensive encoding of irregular data containing land and islands, we construct a graph structure to represent SST data and propose a graph memory neural network (GMNN). The GMNN includes a graph encoder built upon the iterative graph neural network (GNN) idea to extract spatial relationships within SST data. It not only considers node but also edge information, thereby adequately characterizing spatial correlations. Then, a long short-term memory (LSTM) network is used to capture temporal dynamics in the SST variation process. We choose the data from the Northwest Pacific Ocean to validate GMNN's effectiveness for SST prediction in different partitions, time scales, and prediction steps. The results show that our model has better performance for both complete and incomplete sea areas compared to other models.
引用
收藏
页数:19
相关论文
共 43 条
  • [1] Skipjack tuna fishery in relation to sea surface temperature off the southern Brazilian coast
    Andrade, HA
    Garcia, CAE
    [J]. FISHERIES OCEANOGRAPHY, 1999, 8 (04) : 245 - 254
  • [2] Bruna J, 2014, Arxiv, DOI arXiv:1312.6203
  • [3] Ocean prediction with the hybrid coordinate ocean model (HYCOM)
    Chassignet, Eric P.
    Huriburt, Harley E.
    Smedstad, Ole Martin
    Halliwell, George R.
    Hogan, Patrick J.
    Wallcraft, Alan J.
    Bleck, Rainer
    [J]. OCEAN WEATHER FORECASTING: AN INTEGRATED VIEW OF OCEANOGRAPHY, 2006, : 413 - +
  • [4] US GODAE Global Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM)
    Chassignet, Eric P.
    Hurlburt, Harley E.
    Metzger, E. Joseph
    Smedstad, Ole Martin
    Cummings, James A.
    Halliwell, George R.
    Bleck, Rainer
    Baraille, Remy
    Wallcraft, Alan J.
    Lozano, Carlos
    Tolman, Hendrik L.
    Srinivasan, Ashwanth
    Hankin, Steve
    Cornillon, Peter
    Weisberg, Robert
    Barth, Alexander
    He, Ruoying
    Werner, Francisco
    Wilkin, John
    [J]. OCEANOGRAPHY, 2009, 22 (02) : 64 - 75
  • [5] Relative importance of tropical SST anomalies in maintaining the Western North Pacific anomalous anticyclone during El Nio to La Nia transition years
    Chen, Zesheng
    Wen, Zhiping
    Wu, Renguang
    Lin, Xiaobin
    Wang, Jiabao
    [J]. CLIMATE DYNAMICS, 2016, 46 (3-4) : 1027 - 1041
  • [6] Predictability of Indian Ocean sea surface temperature using canonical correlation analysis
    Collins, DC
    Reason, CJC
    Tangang, F
    [J]. CLIMATE DYNAMICS, 2004, 22 (05) : 481 - 497
  • [7] Response of tropical sea surface temperature, precipitation, and tropical cyclone-related variables to changes in global and local forcing
    Emanuel, Kerry
    Sobel, Adam
    [J]. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2013, 5 (02): : 447 - 458
  • [8] Graph Learning: A Survey
    Xia F.
    Sun K.
    Yu S.
    Aziz A.
    Wan L.
    Pan S.
    Liu H.
    [J]. IEEE Transactions on Artificial Intelligence, 2021, 2 (02): : 109 - 127
  • [9] Prediction of sea surface temperatures in the western Mediterranean Sea by neural networks using satellite observations
    Garcia-Gorriz, Elisa
    Garcia-Sanchez, Joan
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (11)
  • [10] Gilmer Justin, 2017, P MACHINE LEARNING R, V70