Transgenerational memory of the effect of drought stress on wheat (Triticum aestivum L.) grain yield

被引:1
|
作者
Becheran, D. E. [1 ,2 ,3 ]
Abeledo, L. G. [1 ,3 ]
Beznec, A. Y. [4 ]
Bossio, E. [4 ]
Faccio, P. [4 ]
Miralles, D. J. [1 ,3 ]
机构
[1] Univ Buenos Aires, Dept Prod Vegetal, Catedra Cerealicultura, Av San Martin4453 C 1417 DSE, RA-1417 Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, Dept Prod Vegetal, Catedra Cult Ind, Av San Martin 4453 C1417DSE, RA-1417 Buenos Aires, DF, Argentina
[3] Univ Buenos Aires, Fac Agron, IFEVA, CONICET, Buenos Aires, DF, Argentina
[4] Inst Nacl Tecnol Agr INTA, Inst Genet Edwald A Favret, Buenos Aires, DF, Argentina
关键词
Transgenerational memory; Grain yield; Grain number; P-SARK; IPT; Water stress; DURUM-WHEAT; ENVIRONMENTAL INDUCTION; HERITABLE CHANGES; NUMBER; COMPONENTS; TEMPERATURE; TOLERANCE; RADIATION; BARLEY; PLANTS;
D O I
10.1007/s10681-023-03221-1
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Water deficit is one of the main abiotic stresses that affect wheat production worldwide. Plants exhibit phenotypic variations to mitigate the negative effects of water stress on grain yield. The objective of the work was to evaluate whether wheat (Triticum aestivum L.) plants showed transgenerational inheritance of environmental adaptation when exposed to water deficit around flowering (i.e. the critical phenological stage for the definition of grain yield). During the first experimental year, plants from three genotypes PIF: commercial cultivar; TR1 and TR4: transgenic genotypes derived from PIF containing the transcription unit P-SARK::IPT (associated with the cytokinin-induced enhanced drought tolerance) were cultivated under well-watered (WWm) or water deficit from Z3.2 to Z6.9 + 5 days (WDm). Offspring of this first year were then grown under well-watered (WWo) or water deficit from Z3.2 to Z6.9 + 5 days (WDo) during the next two years, following a crop arrangement. Plants from seeds exposed to WDm tended to have a poor grain yield for both water regimes of the progeny (i.e. WWo and WDo) in both years. The number of grains per unit area was the numerical component that best explained grain yield (r(2) = 0.98; p < 0.05), due to variations in the number of grains per ear. Grain weight was a highly conservative trait. Aboveground biomass and harvest index reduced in response to WDo compared to WWo and followed similar responses to grain yield. In conclusion, a restrictive maternal water environment worsened yield response in the following generation, independent of the water condition to which the offspring were exposed, due to reductions in the number of grains per spike, in total aboveground biomass at maturity, and in its partitioning to the grain.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Transgenerational memory of the effect of drought stress on wheat (Triticum aestivum L.) grain yield
    D. E. Becheran
    L. G. Abeledo
    A. Y. Beznec
    E. Bossio
    P. Faccio
    D. J. Miralles
    Euphytica, 2023, 219
  • [2] Intergenerational and transgenerational effects of drought stress on winter wheat (Triticum aestivum L.)
    Kambona, Carolyn Mukiri
    Koua, Patrice Ahossi
    Leon, Jens
    Ballvora, Agim
    PHYSIOLOGIA PLANTARUM, 2023, 175 (04)
  • [3] Genomic regions associated with grain yield under drought stress in wheat (Triticum aestivum L.)
    Shukla, Sanyukta
    Singh, Kalpana
    Patil, Rajendra V.
    Kadam, Suhas
    Bharti, Sudhakar
    Prasad, Pratti
    Singh, Nagendra Kumar
    Khanna-Chopra, Renu
    EUPHYTICA, 2015, 203 (02) : 449 - 467
  • [4] YIELD AND YIELD TRAITS OF DURUM WHEAT (Triticum durum desf.) AND BREAD WHEAT (Triticum aestivum L.) GENOTYPES UNDER DROUGHT STRESS
    Allahverdiyev, Tofig
    GENETIKA-BELGRADE, 2016, 48 (02): : 717 - 727
  • [5] EFFECT OF SALINITY ON GRAIN YIELD AND GRAIN QUALITY OF WHEAT (Triticum aestivum L.)
    Abbas, Ghulam
    Saqib, Muhammad
    Rafique, Qaisir
    Rahman, M. Atiq ur
    Akhtar, Javaid
    ul Haq, M. Anwar
    Nasim, M.
    PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 2013, 50 (02): : 185 - 189
  • [6] Embryo and endosperm development in wheat (Triticum aestivum L.) kernels subjected to drought stress
    Fabian, Attila
    Jaeger, Katalin
    Rakszegi, Mariann
    Barnabas, Beata
    PLANT CELL REPORTS, 2011, 30 (04) : 551 - 563
  • [7] DROUGHT STRESS EFFECTS ON RESISTANT GENE EXPRESSION, GROWTH, AND YIELD TRAITS OF WHEAT (TRITICUM AESTIVUM L.)
    Farhood, A. N.
    Merhij, M. Y.
    Al-Fatlawi, Z. H.
    SABRAO JOURNAL OF BREEDING AND GENETICS, 2022, 54 (03): : 512 - 523
  • [8] Genomic regions associated with grain yield under drought stress in wheat (Triticum aestivum L.)
    Sanyukta Shukla
    Kalpana Singh
    Rajendra V. Patil
    Suhas Kadam
    Sudhakar Bharti
    Pratti Prasad
    Nagendra Kumar Singh
    Renu Khanna-Chopra
    Euphytica, 2015, 203 : 449 - 467
  • [9] MAPPING QTLS FOR YIELD AND YIELD COMPONENTS UNDER DROUGHT STRESS IN BREAD WHEAT (TRITICUM AESTIVUM L.)
    Fatima, S.
    Chaudhari, S. K.
    Akhtar, S.
    Amjad, M. S.
    Akbar, M.
    Iqbal, M. S.
    Arshad, M.
    Shehzad, T.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2018, 16 (04): : 4431 - 4453
  • [10] Chitosan seed priming improves yield and recall defence memory under drought stress in wheat (Triticum aestivum L.)
    Hameed, A.
    Farooq, T.
    Hameed, A.
    Sheikh, M. A.
    AGROCHIMICA, 2020, 64 (01): : 59 - 79