On predicting crack length and orientation in twill-woven CFRP based on limited data availability using a physics-based, high fidelity machine learning approach
被引:2
作者:
Budiman, Bentang Arief
论文数: 0引用数: 0
h-index: 0
机构:
Inst Teknol Bandung, Fac Mech & Aerosp Engn, Jl Ganesha 10, Bandung, IndonesiaInst Teknol Bandung, Fac Mech & Aerosp Engn, Jl Ganesha 10, Bandung, Indonesia
Budiman, Bentang Arief
[1
]
Budijanto, Henokh
论文数: 0引用数: 0
h-index: 0
机构:
Inst Teknol Bandung, Fac Mech & Aerosp Engn, Jl Ganesha 10, Bandung, IndonesiaInst Teknol Bandung, Fac Mech & Aerosp Engn, Jl Ganesha 10, Bandung, Indonesia
Budijanto, Henokh
[1
]
Adziman, Fauzan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oxford, Dept Mat, Parks Rd Oxford, Oxford OX1 3PH, EnglandInst Teknol Bandung, Fac Mech & Aerosp Engn, Jl Ganesha 10, Bandung, Indonesia
Adziman, Fauzan
[2
]
Triawan, Farid
论文数: 0引用数: 0
h-index: 0
机构:
Sampoerna Univ, Fac Engn & Technol, Dept Mech Engn, Jl Raya Pasar Minggu 16, Jakarta, IndonesiaInst Teknol Bandung, Fac Mech & Aerosp Engn, Jl Ganesha 10, Bandung, Indonesia
Triawan, Farid
[3
]
Wirawan, Riza
论文数: 0引用数: 0
h-index: 0
机构:
Inst Teknol Bandung, Fac Mech & Aerosp Engn, Jl Ganesha 10, Bandung, IndonesiaInst Teknol Bandung, Fac Mech & Aerosp Engn, Jl Ganesha 10, Bandung, Indonesia
Wirawan, Riza
[1
]
Nurprasetio, Ignatius Pulung
论文数: 0引用数: 0
h-index: 0
机构:
Inst Teknol Bandung, Fac Mech & Aerosp Engn, Jl Ganesha 10, Bandung, IndonesiaInst Teknol Bandung, Fac Mech & Aerosp Engn, Jl Ganesha 10, Bandung, Indonesia
Nurprasetio, Ignatius Pulung
[1
]
机构:
[1] Inst Teknol Bandung, Fac Mech & Aerosp Engn, Jl Ganesha 10, Bandung, Indonesia
[2] Univ Oxford, Dept Mat, Parks Rd Oxford, Oxford OX1 3PH, England
[3] Sampoerna Univ, Fac Engn & Technol, Dept Mech Engn, Jl Raya Pasar Minggu 16, Jakarta, Indonesia
Predicting crack length and orientation in twill woven CFRP plates is notoriously non-trivial due to the interplay of complex physics over multiple length scales. Furthermore, on an industrial scale, a timely yet accurate nondestructive prediction based on a limited amount of data is critical for successful industrial adoption. This paper proposes a physics-assisted surrogate approach, by first measuring electrical conductivities using the Electrical Resistance Charge (ERC) and then developing high-fidelity through-thickness crack models resulting in 42 datasets, and processing the resulting data with a polynomial regression coupled with the leave one out cross validation using physics-based engineered features. The proposed method achieved averaged error of 0.09% and 0.48% for crack length and orientation, respectively, exhibits advantages over the Artificial Neural Network (ANN) in terms of both accuracy and tendency to overfit. This proposed approach paves the way for the maturing of the sought-after real-time Structural Health Monitoring (SHM) of crack length and orientation.