AUTOMATED ACUTE LYMPHOBLASTIC LEUKEMIA CELL CLASSIFICATION USING OPTIMIZED CONVOLUTIONAL NEURAL NETWORK

被引:0
|
作者
Choudhury, Taffazul H. [1 ]
Choudhury, Bismita [1 ]
机构
[1] Assam town Univ, Comp Sci & Engn Fac Engn & Technol, Guwahati, Assam, Thailand
来源
SURANAREE JOURNAL OF SCIENCE AND TECHNOLOGY | 2023年 / 30卷 / 03期
关键词
Acute lymphoblastic leukemia; Blast cell; Classification; Deep learning; Machine learning;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Acute lymphoblastic leukemia (ALL) is the most common variant of paediatric cancer that creates numerous immature white blood cells affecting the bone marrow. Manual diagnosis of leukemia from microscopic evaluation of stained sample slides is an exhausting process, which is less accurate and susceptible to human errors. Additionally, identifying the leukemic blast cells under the microscope is complicated due to morphological similarity with the normal cell images. In this paper, we proposed an automated method to analyse the blood smear images using Local Binary Pattern (LBP) and classify the leukemic blast cells and normal cells. We have analysed the performance of machine learning and deep learning models such as Support Vector Machine (SVM), k-Nearest Neighbor algorithm (kNN), Artificial Neural Network (ANN), and Convolutional Neural Network (CNN). For classifying ALL and normal cell images, kNN achieved an accuracy of 94.4%, SVM, and ANN achieved an accuracy of 98.6%, and CNN achieved an accuracy of 99.6%. SVM achieved the highest sensitivity of 100%.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Learning Transformations for Automated Classification of Manifestation of Tuberculosis using Convolutional Neural Network
    Abbas, Asmaa
    Abdelsamea, Mohammed M.
    PROCEEDINGS OF 2018 13TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND SYSTEMS (ICCES), 2018, : 122 - 126
  • [32] Automated Classification of Oral Cancer Histopathology images using Convolutional Neural Network
    Panigrahi, Santisudha
    Swarnkar, Tripti
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 1232 - 1234
  • [33] Cardiac Arrhythmia Classification Using Convolutional Neural Network
    Gamgami, Oumaima
    Korikache, Reda
    Chaieb, Amine
    ADVANCES IN SMART MEDICAL, IOT & ARTIFICIAL INTELLIGENCE, VOL 1, ICSMAI 2024, 2024, 11 : 297 - 308
  • [34] Optimized Convolutional Neural Network Models for Skin Lesion Classification
    Villa-Pulgarin, Juan Pablo
    Ruales-Torres, Anderson Alberto
    Arias-Garzon, Daniel
    Bravo-Ortiz, Mario Alejandro
    Arteaga-Arteaga, Harold Brayan
    Mora-Rubio, Alejandro
    Alzate-Grisales, Jesus Alejandro
    Mercado-Ruiz, Esteban
    Hassaballah, M.
    Orozco-Arias, Simon
    Cardona-Morales, Oscar
    Tabares-Soto, Reinel
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (02): : 2131 - 2148
  • [35] Pepper bell leaf disease detection and classification using optimized convolutional neural network
    Mustafa, Hassan
    Umer, Muhammad
    Hafeez, Umair
    Hameed, Ahmad
    Sohaib, Ahmed
    Ullah, Saleem
    Madni, Hamza Ahmad
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (08) : 12065 - 12080
  • [36] Pepper bell leaf disease detection and classification using optimized convolutional neural network
    Hassan Mustafa
    Muhammad Umer
    Umair Hafeez
    Ahmad Hameed
    Ahmed Sohaib
    Saleem Ullah
    Hamza Ahmad Madni
    Multimedia Tools and Applications, 2023, 82 : 12065 - 12080
  • [37] Modeling of the Acute Lymphoblastic Leukemia Detection by Convolutional Neural Networks (CNNs)
    Albeeshi, Annal A.
    Alshanbari, Hanan S.
    CURRENT MEDICAL IMAGING, 2023, 19 (07) : 734 - 748
  • [38] Deep Convolutional Neural Network for Automated Bird Species Classification
    Gavali, Pralhad
    Banu, J. Saira
    TRAITEMENT DU SIGNAL, 2024, 41 (01) : 261 - 271
  • [39] Classification of White blood cell using Deep Convolutional Neural Network
    Throngnumchai, Kan
    Lomvisai, Pitchayakom
    Tantasirin, Chayanan
    Phasukkit, Pattarapong
    2019 12TH BIOMEDICAL ENGINEERING INTERNATIONAL CONFERENCE (BMEICON 2019), 2019,
  • [40] Automated Classification of Urinary Cells: Using Convolutional Neural Network Pre-trained on Lung Cells
    Teramoto, Atsushi
    Michiba, Ayano
    Kiriyama, Yuka
    Sakurai, Eiko
    Shiroki, Ryoichi
    Tsukamoto, Tetsuya
    APPLIED SCIENCES-BASEL, 2023, 13 (03):