Open quantum system violates generalized Pauli constraints on quantum device

被引:1
作者
Avdic, Irma [1 ,2 ]
Sager-Smith, LeeAnn M. [1 ,2 ]
Mazziotti, David A. [1 ,2 ]
机构
[1] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
[2] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
MATRIX;
D O I
10.1038/s42005-023-01295-w
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fermionic systems in a pure state are subject to restrictions on the natural orbital occupation, known as the generalized Pauli constraints. The authors probe the violation of such constraints in 3-to-7 qubit systems, experimentally demonstrating that the one-fermion reduced density matrix encodes the openness of a fermionic quantum system. The Pauli exclusion principle governs the fundamental structure and function of fermionic systems from molecules to materials. Nonetheless, when such a fermionic system is in a pure state, it is subject to additional restrictions known as the generalized Pauli constraints (GPCs). Here we verify experimentally the violation of the GPCs for an open quantum system using data from a superconducting-qubit quantum computer. We prepare states of systems with three-to-seven qubits directly on the quantum device and measure the one-fermion reduced density matrix (1-RDM) from which we can test the GPCs. We find that the GPCs of the 1-RDM are sufficiently sensitive to detect the openness of the 3-to-7 qubit systems in the presence of a single-qubit environment. Results confirm experimentally that the openness of a many-fermion quantum system can be decoded from only a knowledge of the 1-RDM with potential applications from quantum computing and sensing to noise-assisted energy transfer.
引用
收藏
页数:7
相关论文
共 50 条
[41]   Pinning of Fermionic Occupation Numbers [J].
Schilling, Christian ;
Gross, David ;
Christandl, Matthias .
PHYSICAL REVIEW LETTERS, 2013, 110 (04)
[42]   Relaxation of stationary states on a quantum computer yields a unique spectroscopic fingerprint of the computer's noise [J].
Smart, Scott E. ;
Hu, Zixuan ;
Kais, Sabre ;
Mazziotti, David A. .
COMMUNICATIONS PHYSICS, 2022, 5 (01)
[43]   Experimental data from a quantum computer verifies the generalized Pauli exclusion principle [J].
Smart, Scott E. ;
Schuster, David, I ;
Mazziotti, David A. .
COMMUNICATIONS PHYSICS, 2019, 2 (1)
[44]   On local invariants of pure three-qubit states [J].
Sudbery, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (03) :643-652
[45]   Influence of the fermionic exchange symmetry beyond Pauli's exclusion principle [J].
Tennie, Felix ;
Vedral, Vlatko ;
Schilling, Christian .
PHYSICAL REVIEW A, 2017, 95 (02)
[46]   Generalized Pauli constraints in reduced density matrix functional theory [J].
Theophilou, Iris ;
Lathiotakis, Nektarios N. ;
Marques, Miguel A. L. ;
Helbig, Nicole .
JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (15)
[47]  
Treinish Matthew, 2023, Zenodo
[48]  
Von Neumann J., 1932, Mathematical Foundations of Quantum Mechanics
[49]  
Schlimgen AW, 2022, Arxiv, DOI [arXiv:2207.07112, 10.48550/arXiv.2207.07112,quant-ph, DOI 10.48550/ARXIV.2207.07112,QUANT-PH]
[50]   Quantum simulation of quantum phase transitions using the convex geometry of reduced density matrices [J].
Warren, Samuel ;
Sager-Smith, Leeann M. ;
Mazziotti, David A. .
PHYSICAL REVIEW A, 2022, 106 (01)