共 50 条
Bioinspired Synthesis of Silver Nanoparticles for the Remediation of Toxic Pollutants and Enhanced Antibacterial Activity
被引:4
|作者:
Mandal, Sujata
[1
]
Hwang, Sangchul
[1
]
Marpu, Sreekar B.
[2
]
Omary, Mohammad A.
[2
]
Prybutok, Victor
[3
]
Shi, Sheldon Q.
[4
]
机构:
[1] Texas State Univ, Ingram Sch Engn, San Marcos, TX 78666 USA
[2] Univ North Texas, Dept Chem, Denton, TX 76207 USA
[3] Univ North Texas, G Brint Ryan Coll Business, Denton, TX 76207 USA
[4] Univ North Texas, Dept Mech Engn, Denton, TX 76207 USA
关键词:
silver-modified activated carbon;
heavy metals;
dye;
bacteria;
adsorption;
MULTIWALLED CARBON NANOTUBES;
HEAVY-METAL IONS;
ACTIVATED CARBON;
CONGO RED;
AQUEOUS-SOLUTION;
PHOTOCATALYTIC DEGRADATION;
REMOVAL;
ADSORPTION;
ADSORBENT;
KENAF;
D O I:
10.3390/biom13071054
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
This research presents a novel and environmentally friendly approach for the synthesis of multifunctional nanobiocomposites for the efficient removal of toxic heavy metal and dye, as well as the disinfection of wastewater microorganisms. The nanobiocomposites (KAC-CS-AgNPs) were prepared by incorporating photochemically generated silver nanoparticles (AgNPs) within a chitosan (CS)-modified, high-surface-area activated carbon derived from kenaf (KAC), using a unique self-activation method. The even distribution of AgNPs was visible in the scanning electron microscopy images and a Fourier transform infra red study demonstrated major absorption peaks. The experimental results revealed that KA-CS-AgNPs exhibited exceptional adsorption efficiency for copper (Cu2+), lead (Pb2+), and Congo Red dye (CR), and showed potent antibacterial activity against Staphylococcus aureus and Escherichia coli. The maximum adsorption capacity (mg g(-1)) of KAC-CS-AgNPs was 71.5 for Cu2+, 72.3 for Pb2+, and 75.9 for CR, and the adsorption phenomena followed on the Freundlich and Langmuir isotherm models and the second-order kinetic model (R-2 > 0.99). KAC-CS-AgNPs also exhibited excellent reusability of up to four consecutive cycles with minor losses in adsorption ability. The thermodynamic parameters indicated that the adsorption process was spontaneous and endothermic in nature. The bacterial inactivation tests demonstrated that KAC-CS-AgNPs had a strong bactericidal effect on both E. coli and S. aureus, with MIC calculated for E. coli and S. aureus as 32 & mu;g mL(-1) and 44 & mu;g mL(-1), respectively. The synthesized bioinspired nanocomposite KAC-CS-AgNPs could be an innovative solution for effective and sustainable wastewater treatment and has great potential for commercial applications.
引用
收藏
页数:23
相关论文