Prognostics;
Attention;
Gate Recurrent Unit;
Remaining useful life prediction;
Encoder-decoder;
long short-term memory (LSTM) [18;
19;
FRAMEWORK;
D O I:
10.1016/j.asoc.2023.110419
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
An essential process in prognostics and health management (PHM) is remaining useful life (RUL) prediction. The traditional Recurrent Neural Networks (RNNs) and their variants are not very efficient at solving the regression problems of RUL prediction. Given this problem, an attention-based Gate Recurrent Unit (ABGRU) for RUL prediction is proposed in this paper. Firstly, the dataset is preprocessed, and the RUL labels are modeled using the piecewise linear degradation method. Then, a GRU network based on an encoder-decoder framework with an attention mechanism is proposed. The network can assign weights according to the importance of feature information and effectively use the feature information to predict RUL. The validity of the proposed framework is verified in the NASA C-MAPSS benchmark dataset. The results show that the presented method outperforms the existing state-of-the-art approaches and provides a new solution for RUL Prediction. & COPY; 2023 Elsevier B.V. All rights reserved.
机构:
Univ Nebraska, Dept Elect & Comp Engn, Power & Energy Syst Lab, Lincoln, NE 68588 USAUniv Nebraska, Dept Elect & Comp Engn, Power & Energy Syst Lab, Lincoln, NE 68588 USA
Cheng, Fangzhou
Qu, Liyan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nebraska, Dept Elect & Comp Engn, Power & Energy Syst Lab, Lincoln, NE 68588 USAUniv Nebraska, Dept Elect & Comp Engn, Power & Energy Syst Lab, Lincoln, NE 68588 USA
Qu, Liyan
Qiao, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nebraska, Dept Elect & Comp Engn, Power & Energy Syst Lab, Lincoln, NE 68588 USAUniv Nebraska, Dept Elect & Comp Engn, Power & Energy Syst Lab, Lincoln, NE 68588 USA
机构:
Univ Nebraska, Dept Elect & Comp Engn, Power & Energy Syst Lab, Lincoln, NE 68588 USAUniv Nebraska, Dept Elect & Comp Engn, Power & Energy Syst Lab, Lincoln, NE 68588 USA
Cheng, Fangzhou
Qu, Liyan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nebraska, Dept Elect & Comp Engn, Power & Energy Syst Lab, Lincoln, NE 68588 USAUniv Nebraska, Dept Elect & Comp Engn, Power & Energy Syst Lab, Lincoln, NE 68588 USA
Qu, Liyan
Qiao, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nebraska, Dept Elect & Comp Engn, Power & Energy Syst Lab, Lincoln, NE 68588 USAUniv Nebraska, Dept Elect & Comp Engn, Power & Energy Syst Lab, Lincoln, NE 68588 USA