ReBiDet: An Enhanced Ship Detection Model Utilizing ReDet and Bi-Directional Feature Fusion

被引:4
作者
Yan, Zexin [1 ]
Li, Zhongbo [1 ]
Xie, Yongqiang [1 ]
Li, Chengyang [1 ,2 ]
Li, Shaonan [1 ]
Sun, Fangwei [1 ]
机构
[1] Acad Mil Sci, Inst Syst Engn, Beijing 100000, Peoples R China
[2] Peking Univ, Sch Comp Sci, Beijing 100000, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 12期
关键词
artificial intelligence; deep learning; remote sensing images; ship detection; bi-directional feature fusion; feature pyramid network; anchor size; K-means; sampler;
D O I
10.3390/app13127080
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To enhance ship detection accuracy in the presence of complex scenes and significant variations in object scales, this study introduces three enhancements to ReDet, resulting in a more powerful ship detection model called rotation-equivariant bidirectional feature fusion detector (ReBiDet). Firstly, the feature pyramid network (FPN) structure in ReDet is substituted with a rotation-equivariant bidirectional feature fusion feature pyramid network (ReBiFPN) to effectively capture and enrich multiscale feature information. Secondly, K-means clustering is utilized to group the aspect ratios of ground truth boxes in the dataset and adjust the anchor size settings accordingly. Lastly, the difficult positive reinforcement learning (DPRL) sampler is employed instead of the random sampler to address the scale imbalance issue between objects and backgrounds in the dataset, enabling the model to prioritize challenging positive examples. Through numerous experiments conducted on the HRSC2016 and DOTA remote sensing image datasets, the effectiveness of the proposed improvements in handling complex environments and small object detection tasks is validated. The ReBiDet model demonstrates state-of-the-art performance in remote sensing object detection tasks. Compared to the ReDet model and other advanced models, our ReBiDet achieves mAP improvements of 3.20, 0.42, and 1.16 on HRSC2016, DOTA-v1.0, and DOTA-v1.5, respectively, with only a slight increase of 0.82 million computational parameters.
引用
收藏
页数:25
相关论文
共 58 条
[1]  
[Anonymous], The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results
[2]  
Arthur D, 2007, PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1027
[3]   Towards Multi-class Object Detection in Unconstrained Remote Sensing Imagery [J].
Azimi, Seyed Majid ;
Vig, Eleonora ;
Bahmanyar, Reza ;
Koerner, Marco ;
Reinartz, Peter .
COMPUTER VISION - ACCV 2018, PT III, 2019, 11363 :150-165
[4]   Hybrid Task Cascade for Instance Segmentation [J].
Chen, Kai ;
Pang, Jiangmiao ;
Wang, Jiaqi ;
Xiong, Yu ;
Li, Xiaoxiao ;
Sun, Shuyang ;
Feng, Wansen ;
Liu, Ziwei ;
Shi, Jianping ;
Ouyang, Wanli ;
Loy, Chen Change ;
Lin, Dahua .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4969-4978
[5]   Efficient Saliency-Based Object Detection in Remote Sensing Images Using Deep Belief Networks [J].
Diao, Wenhui ;
Sun, Xian ;
Zheng, Xinwei ;
Dou, Fangzheng ;
Wang, Hongqi ;
Fu, Kun .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (02) :137-141
[6]   Object Detection in Aerial Images: A Large-Scale Benchmark and Challenges [J].
Ding, Jian ;
Xue, Nan ;
Xia, Gui-Song ;
Bai, Xiang ;
Yang, Wen ;
Yang, Michael Ying ;
Belongie, Serge ;
Luo, Jiebo ;
Datcu, Mihai ;
Pelillo, Marcello ;
Zhang, Liangpei .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (11) :7778-7796
[7]   Learning RoI Transformer for Oriented Object Detection in Aerial Images [J].
Ding, Jian ;
Xue, Nan ;
Long, Yang ;
Xia, Gui-Song ;
Lu, Qikai .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :2844-2853
[8]   An approach for visual attention based on biquaternion and its application for ship detection in multispectral imagery [J].
Ding, Zhenghu ;
Yu, Ying ;
Wang, Bin ;
Zhang, Liming .
NEUROCOMPUTING, 2012, 76 (01) :9-17
[9]   Optical Remote Sensing Image Denoising and Super-Resolution Reconstructing Using Optimized Generative Network in Wavelet Transform Domain [J].
Feng, Xubin ;
Zhang, Wuxia ;
Su, Xiuqin ;
Xu, Zhengpu .
REMOTE SENSING, 2021, 13 (09)
[10]   Effective Fusion Factor in FPN for Tiny Object Detection [J].
Gong, Yuqi ;
Yu, Xuehui ;
Ding, Yao ;
Peng, Xiaoke ;
Zhao, Jian ;
Han, Zhenjun .
2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, :1159-1167