A deep learning-based image reconstruction method for USCT that employs multimodality inputs

被引:1
作者
Jeong, Gangwon [1 ]
Li, Fu [1 ]
Villa, Umberto [2 ]
Anastasio, Mark A. [1 ]
机构
[1] Univ Illinois UrbanaChampaign, Dept Bioengn, Champaign, IL 61801 USA
[2] Univ Texas Austin, Oden Inst, Austin, TX 78712 USA
来源
MEDICAL IMAGING 2023 | 2023年 / 12470卷
基金
美国国家卫生研究院;
关键词
Ultrasound computed tomography; traveltime tomography; reflection tomography; full-waveform inversion; deep learning; ULTRASOUND; TOMOGRAPHY;
D O I
10.1117/12.2654564
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Ultrasound computed tomography (USCT) has the potential to detect breast cancer by measuring tissue acoustic properties such as speed-of-sound (SOS). Current USCT image reconstruction methods for SOS fall into two categories, each with its own limitations. Ray-based methods are computationally efficient but suffer from low spatial resolution due to neglecting scattering effects, while full-waveform inversion (FWI) methods offer higher spatial resolution but are computationally intensive, limiting their widespread application. To address these issues, a deep learning (DL)-based method is proposed for USCT breast imaging that achieves SOS reconstruction quality comparable to FWI while remaining computationally efficient. This method leverages the computational efficiency and high-quality image reconstruction capabilities of DL-based methods, which have shown promise in various medical image reconstruction problems. Specifically, low-resolution SOS images estimated by ray-based traveltime tomography and reflectivity images from reflection tomography are employed as inputs to a U-Net-based image reconstruction method. These complementary images provide direct SOS information (via traveltime tomography) and tissue boundary information (via reflectivity tomography). The U-Net is trained in a supervised manner to map the two input images into a single, high-resolution image of the SOS map. Numerical studies using realistic numerical breast phantoms show promise for improving image quality compared to naive, single-input U-Net-based approaches, using either traveltime or reflection tomography images as inputs. The proposed DL-based method is computationally efficient and may offer a practical solution for enhancing SOS reconstruction quality, which could potentially improve diagnostic accuracy.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Image Reconstruction Method for Photonic Integrated Interferometric Imaging Based on Deep Learning
    Xu, Qianchen
    Chang, Weijie
    Huang, Feng
    Zhang, Wang
    CURRENT OPTICS AND PHOTONICS, 2024, 8 (04) : 391 - 398
  • [42] Improving radiomics reproducibility using deep learning-based image conversion of CT reconstruction algorithms in hepatocellular carcinoma patients
    Lee, Heejin
    Chang, Won
    Kim, Hae Young
    Sung, Pamela
    Cho, Jungheum
    Lee, Yoon Jin
    Kim, Young Hoon
    EUROPEAN RADIOLOGY, 2024, 34 (03) : 2036 - 2047
  • [43] A survey on deep learning-based image forgery detection
    Mehrjardi, Fatemeh Zare
    Latif, Ali Mohammad
    Zarchi, Mohsen Sardari
    Sheikhpour, Razieh
    PATTERN RECOGNITION, 2023, 144
  • [44] Deep learning-based image recognition for autonomous driving
    Fujiyoshi, Hironobu
    Hirakawa, Tsubasa
    Yamashita, Takayoshi
    IATSS RESEARCH, 2019, 43 (04) : 244 - 252
  • [45] Deep Learning-based Text-in-Image Watermarking
    Karki, Bishwa
    Tsai, Chun-Hua
    Huang, Pei-Chi
    Zhong, Xin
    2024 IEEE 7TH INTERNATIONAL CONFERENCE ON MULTIMEDIA INFORMATION PROCESSING AND RETRIEVAL, MIPR 2024, 2024, : 376 - 382
  • [46] CNN deep learning-based image to vector depiction
    Waheed, Safa Riyadh
    Rahim, Mohd Shafry Mohd
    Suaib, Norhaida Mohd
    Salim, A. A.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (13) : 20283 - 20302
  • [47] Review of Deep Learning-Based Image Inpainting Techniques
    Yang, Jing
    Ruhaiyem, Nur Intan Raihana
    IEEE ACCESS, 2024, 12 : 138441 - 138482
  • [48] Deep Learning-Based Image and Video Inpainting: A Survey
    Quan, Weize
    Chen, Jiaxi
    Liu, Yanli
    Yan, Dong-Ming
    Wonka, Peter
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (07) : 2367 - 2400
  • [49] Deep learning-based image processing in optical microscopy
    Sindhoora Kaniyala Melanthota
    Dharshini Gopal
    Shweta Chakrabarti
    Anirudh Ameya Kashyap
    Raghu Radhakrishnan
    Nirmal Mazumder
    Biophysical Reviews, 2022, 14 : 463 - 481
  • [50] A Survey on Deep Learning-Based Medical Image Registration
    Xu, Ronghao
    Liu, Chongxin
    Liu, Shuaitong
    Huang, Weijie
    Zhang, Menghua
    NEURAL COMPUTING FOR ADVANCED APPLICATIONS, NCAA 2024, PT I, 2025, 2181 : 332 - 346