UKF-Based Channel Tracking Method for IRS-Aided mmWave MISO Systems

被引:0
|
作者
Xie, Taoyu [1 ]
Tao, Qin [2 ]
Gan, Xu [1 ]
Zhong, Caijun [1 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
[2] Hangzhou Normal Univ, Sch Informat Sci & Technol, Hangzhou 311121, Peoples R China
关键词
Millimeter wave communication; intelligent reflecting surface; channel tracking; unscented Kalman filter; beamforming design;
D O I
10.1109/LCOMM.2023.3269201
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this letter, we propose an unscented Kalman filtering (UKF)-based method to track the channel parameters of the intelligent reflecting surface (IRS) aided millimeter wave (mmWave) multi-input single-output (MISO) systems. To minimize the mean squared error (MSE) of the tracking parameters, the beamforming vector of the base station (BS) and the reflecting vector of the IRS are designed iteratively, considering the transmit power constraint of the BS and the unit module constraint of the IRS. The resulting sub-problems can be transformed into quadratic constraint quadratic problems (QCQPs), which are solved by the semidefinite relaxation (SDR) method and Gaussian randomization. Simulation results demonstrate that the proposed method outperforms existing benchmark methods.
引用
收藏
页码:1599 / 1603
页数:5
相关论文
共 50 条
  • [1] IRS-Aided Joint Spatial Division and Multiplexing for mmWave Multiuser MISO Systems
    Chen, Zijian
    Zhao, Ming-Min
    Li, Min
    Lei, Ming
    Zhao, Min-Jian
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (11) : 7789 - 7804
  • [2] Joint Location Sensing and Channel Estimation for IRS-Aided mmWave ISAC Systems
    Chen, Zijian
    Zhao, Ming-Min
    Li, Min
    Xu, Fan
    Wu, Qingqing
    Zhao, Min-Jian
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (09) : 11985 - 12002
  • [3] IRS-Aided JS']JSDM for mmWave Multiuser MISO Systems: A Low Overhead Scheme
    Chen, Zijian
    Zhao, Ming-Min
    Li, Min
    Lei, Ming
    Zhao, Min-Jian
    2023 IEEE 98TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-FALL, 2023,
  • [4] Joint Target Sensing and Channel Estimation for IRS-Aided mmWave ISAC Systems
    Chen, Zijian
    Zhao, Ming-Min
    Li, Min
    Xu, Fan
    Wu, Qingqing
    Zhao, Min-Jian
    2024 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC 2024, 2024,
  • [5] Roadside Intelligence: Efficient Channel Estimation for IRS-Aided mmWave Vehicular Communication
    Nandan, S.
    Abdul Rahiman, M.
    IEEE ACCESS, 2024, 12 : 115883 - 115894
  • [6] Channel Tracking and Prediction for IRS-Aided Wireless Communications
    Wei, Yi
    Zhao, Ming-Min
    Liu, An
    Zhao, Min-Jian
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (01) : 563 - 579
  • [7] Asymptotically Near-Optimal Hybrid Beamforming for mmWave IRS-Aided MIMO Systems
    Lee, Jeongjae
    Hong, Songnam
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (01) : 546 - 555
  • [8] GAN-Based Channel Estimation for IRS-Aided Communication Systems
    Haider, Majumder
    Ahmed, Imtiaz
    Rubaai, Ahmed
    Pu, Cong
    Rawat, Danda B.
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (04) : 6012 - 6017
  • [9] One-Bit Channel Estimation for IRS-Aided Millimeter-Wave Massive MU-MISO System
    Wang, Silei
    Li, Qiang
    Lin, Jingran
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 3592 - 3606
  • [10] Robust Probabilistic-Constrained Optimization for IRS-Aided MISO Communication Systems
    Le, Tuan Anh
    Van Chien, Trinh
    Renzo, Marco Di
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (01) : 1 - 5