UKF-Based Channel Tracking Method for IRS-Aided mmWave MISO Systems

被引:0
|
作者
Xie, Taoyu [1 ]
Tao, Qin [2 ]
Gan, Xu [1 ]
Zhong, Caijun [1 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
[2] Hangzhou Normal Univ, Sch Informat Sci & Technol, Hangzhou 311121, Peoples R China
关键词
Millimeter wave communication; intelligent reflecting surface; channel tracking; unscented Kalman filter; beamforming design;
D O I
10.1109/LCOMM.2023.3269201
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this letter, we propose an unscented Kalman filtering (UKF)-based method to track the channel parameters of the intelligent reflecting surface (IRS) aided millimeter wave (mmWave) multi-input single-output (MISO) systems. To minimize the mean squared error (MSE) of the tracking parameters, the beamforming vector of the base station (BS) and the reflecting vector of the IRS are designed iteratively, considering the transmit power constraint of the BS and the unit module constraint of the IRS. The resulting sub-problems can be transformed into quadratic constraint quadratic problems (QCQPs), which are solved by the semidefinite relaxation (SDR) method and Gaussian randomization. Simulation results demonstrate that the proposed method outperforms existing benchmark methods.
引用
收藏
页码:1599 / 1603
页数:5
相关论文
共 50 条
  • [1] Fast Beamforming Design Method for IRS-Aided mmWave MISO Systems
    He, Zhengran
    Huang, Hao
    Yang, Jie
    Gui, Guan
    Ohtsuki, Tomoaki
    Adebisi, Bamidele
    Gacanin, Haris
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [2] IRS-Aided Joint Spatial Division and Multiplexing for mmWave Multiuser MISO Systems
    Chen, Zijian
    Zhao, Ming-Min
    Li, Min
    Lei, Ming
    Zhao, Min-Jian
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (11) : 7789 - 7804
  • [3] IRS-Aided JS']JSDM for mmWave Multiuser MISO Systems: A Low Overhead Scheme
    Chen, Zijian
    Zhao, Ming-Min
    Li, Min
    Lei, Ming
    Zhao, Min-Jian
    2023 IEEE 98TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-FALL, 2023,
  • [4] Tensor-based mobile channel tracking for IRS-aided transmission systems
    Su, Ying
    Zhang, Jing
    ELECTRONICS LETTERS, 2023, 59 (13)
  • [5] Joint Target Sensing and Channel Estimation for IRS-Aided mmWave ISAC Systems
    Chen, Zijian
    Zhao, Ming-Min
    Li, Min
    Xu, Fan
    Wu, Qingqing
    Zhao, Min-Jian
    2024 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC 2024, 2024,
  • [6] Joint Location Sensing and Channel Estimation for IRS-Aided mmWave ISAC Systems
    Chen, Zijian
    Zhao, Ming-Min
    Li, Min
    Xu, Fan
    Wu, Qingqing
    Zhao, Min-Jian
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (09) : 11985 - 12002
  • [7] Channel Tracking and Prediction for IRS-Aided Wireless Communications
    Wei, Yi
    Zhao, Ming-Min
    Liu, An
    Zhao, Min-Jian
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (01) : 563 - 579
  • [8] Cascaded Channel Estimator for IRS-Aided mmWave Hybrid MIMO System
    Shukla, Vidya Bhasker
    Bhatia, Vimal
    Choi, Kwonhue
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (03) : 622 - 626
  • [9] Energy Efficiency Optimization in IRS-Aided Multiuser MISO Communication Systems
    Deng, Boxiang
    Yuan, Zhenglin
    Tang, Zhengquan
    Jiao, Wanguo
    Li, Chunguo
    Zhou, Wen
    IEEE SENSORS JOURNAL, 2024, 24 (21) : 35801 - 35808
  • [10] An Efficient Calibration Algorithm for IRS-Aided mmWave Systems With Hardware Impairments
    Zhang, Jiezhi
    Zhong, Caijun
    Zhang, Zhaoyang
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (01) : 172 - 176