Lead-chelating hole-transport layers for efficient and stable perovskite minimodules

被引:188
作者
Fei, Chengbin [1 ]
Li, Nengxu [1 ]
Wang, Mengru [1 ]
Wang, Xiaoming [2 ]
Gu, Hangyu [1 ]
Chen, Bo [3 ]
Zhang, Zhao [3 ]
Ni, Zhenyi [1 ]
Jiao, Haoyang [1 ]
Xu, Wenzhan [1 ]
Shi, Zhifang [1 ]
Yan, Yanfa [2 ]
Huang, Jinsong [1 ,4 ]
机构
[1] Univ North Carolina Chapel Hill, Dept Appl Phys Sci, Chapel Hill, NC 27599 USA
[2] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA
[3] Perotech Inc, Chapel Hill, NC 27516 USA
[4] Univ North Carolina Chapel Hill, Dept Chem, Chapel Hill, NC 27599 USA
关键词
SOLAR-CELLS; BATHOCUPROINE; BLOCKING; INTERFACES; CONTACTS; FILMS;
D O I
10.1126/science.ade9463
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The defective bottom interfaces of perovskites and hole-transport layers (HTLs) limit the performance of p-i-n structure perovskite solar cells. We report that the addition of lead chelation molecules into HTLs can strongly interact with lead(II) ion (Pb2+), resulting in a reduced amorphous region in perovskites near HTLs and a passivated perovskite bottom surface. The minimodule with an aperture area of 26.9 square centimeters has a power conversion efficiency (PCE) of 21.8% (stabilized at 21.1%) that is certified by the National Renewable Energy Laboratory (NREL), which corresponds to a minimal small-cell efficiency of 24.6% (stabilized 24.1%) throughout the module area. Small-area cells and large-area minimodules with lead chelation molecules in HTLs had a light soaking stability of 3010 and 2130 hours, respectively, at an efficiency loss of 10% from the initial value under 1-sun illumination and open-circuit voltage conditions.
引用
收藏
页码:823 / 829
页数:7
相关论文
共 46 条
[41]   Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts [J].
Yang, Shuang ;
Chen, Shangshang ;
Mosconi, Edoardo ;
Fang, Yanjun ;
Xiao, Xun ;
Wang, Congcong ;
Zhou, Yu ;
Yu, Zhenhua ;
Zhao, Jingjing ;
Gao, Yongli ;
De Angelis, Filippo ;
Huang, Jinsong .
SCIENCE, 2019, 365 (6452) :473-+
[42]   Dopant free mixture of Spiro-OMeTAD and PTAA with tunable wettability as hole transport layer enhancing performance of inverted CsPbI2Br perovskite solar cells [J].
Yang, Ying ;
Yuan, Quan ;
Li, Huanya ;
Niu, Yitong ;
Han, Dongwei ;
Yang, Qifeng ;
Yang, Yang ;
Yi, Siwei ;
Zhou, Dong-Ying ;
Feng, Lai .
ORGANIC ELECTRONICS, 2020, 86
[43]   A Breakthrough Efficiency of 19.9% Obtained in Inverted Perovskite Solar Cells by Using an Efficient Trap State Passivator Cu(thiourea)I [J].
Ye, Senyun ;
Rao, Haixia ;
Zhao, Ziran ;
Zhang, Linjuan ;
Bao, Hongliang ;
Sun, Weihai ;
Li, Yunlong ;
Gu, Feidan ;
Wang, Jianqiang ;
Liu, Zhiwei ;
Bian, Zuqiang ;
Huang, Chunhui .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (22) :7504-7512
[44]   Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells [J].
Zhao, Yang ;
Ma, Fei ;
Qu, Zihan ;
Yu, Shiqi ;
Shen, Tao ;
Deng, Hui-Xiong ;
Chu, Xinbo ;
Peng, Xinxin ;
Yuan, Yongbo ;
Zhang, Xingwang ;
You, Jingbi .
SCIENCE, 2022, 377 (6605) :531-534
[45]   The Stabilization of Formamidinium Lead Tri-Iodide Perovskite through a Methylammonium-Based Additive for High-Efficiency Solar Cells [J].
Zhu, Tao ;
Zheng, Daming ;
Rager, Marie-Noelle ;
Pauporte, Thierry .
SOLAR RRL, 2020, 4 (11)
[46]   Passivating buried interface via self-assembled novel sulfonium salt toward stable and efficient perovskite solar cells [J].
Zuo, Xin ;
Kim, Bohyung ;
Liu, Baibai ;
He, Dongmei ;
Bai, Le ;
Wang, Wenqi ;
Xu, Cunyun ;
Song, Qunliang ;
Jia, Chunyang ;
Zang, Zhigang ;
Lee, Donghwa ;
Li, Xiong ;
Chen, Jiangzhao .
CHEMICAL ENGINEERING JOURNAL, 2022, 431