Learning Inter-superpoint Affinity for Weakly Supervised 3D Instance Segmentation

被引:0
作者
Tang, Linghua [1 ]
Hui, Le [1 ]
Xie, Jin [1 ]
机构
[1] Nanjing Univ Sci & Technol, Nanjing, Peoples R China
来源
COMPUTER VISION - ACCV 2022, PT I | 2023年 / 13841卷
关键词
D O I
10.1007/978-3-031-26319-4_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to the few annotated labels of 3D point clouds, how to learn discriminative features of point clouds to segment object instances is a challenging problem. In this paper, we propose a simple yet effective 3D instance segmentation framework that can achieve good performance by annotating only one point for each instance. Specifically, to tackle extremely few labels for instance segmentation, we first over-segment the point cloud into superpoints in an unsupervised manner and extend the point-level annotations to the superpoint level. Then, based on the superpoint graph, we propose an inter-superpoint affinity mining module that considers the semantic and spatial relations to adaptively learn inter-superpoint affinity to generate high-quality pseudo labels via semantic-aware random walk. Finally, we propose a volume-aware instance refinement module to segment high-quality instances by applying volume constraints of objects in clustering on the superpoint graph. Extensive experiments on the ScanNet-v2 and S3DIS datasets demonstrate that our method achieves state-of-the-art performance in the weakly supervised point cloud instance segmentation task, and even outperforms some fully supervised methods. Source code is available at https://github.com/fpthink/3D-WSIS.
引用
收藏
页码:176 / 192
页数:17
相关论文
共 36 条
[1]   3D Semantic Parsing of Large-Scale Indoor Spaces [J].
Armeni, Iro ;
Sener, Ozan ;
Zamir, Amir R. ;
Jiang, Helen ;
Brilakis, Ioannis ;
Fischer, Martin ;
Savarese, Silvio .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1534-1543
[2]   Hierarchical Aggregation for 3D Instance Segmentation [J].
Chen, Shaoyu ;
Fang, Jiemin ;
Zhang, Qian ;
Liu, Wenyu ;
Wang, Xinggang .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :15447-15456
[3]  
Cheng M., 2021, AAAI
[4]   Cascaded Non-local Neural Network for Point Cloud Semantic Segmentation [J].
Cheng, Mingmei ;
Hui, Le ;
Xie, Jin ;
Yang, Jian ;
Kong, Hui .
2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, :8447-8452
[5]   4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks [J].
Choy, Christopher ;
Gwak, JunYoung ;
Savarese, Silvio .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3070-3079
[6]   ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes [J].
Dai, Angela ;
Chang, Angel X. ;
Savva, Manolis ;
Halber, Maciej ;
Funkhouser, Thomas ;
Niessner, Matthias .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2432-2443
[7]  
De Brabandere B, 2017, ARXIV
[8]   3D Semantic Segmentation with Submanifold Sparse Convolutional Networks [J].
Graham, Benjamin ;
Engelcke, Martin ;
van der Maaten, Laurens .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :9224-9232
[9]   3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans [J].
Hou, Ji ;
Dai, Angela ;
Niessner, Matthias .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4416-4425
[10]   Superpoint Network for Point Cloud Oversegmentation [J].
Hui, Le ;
Yuan, Jia ;
Cheng, Mingmei ;
Xie, Jin ;
Zhang, Xiaoya ;
Yang, Jian .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :5490-5499