Applications of machine learning to detecting fast neutrino flavor instabilities in core-collapse supernova and neutron star merger models

被引:14
作者
Abbar, Sajad [1 ]
机构
[1] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Fohringer Ring 6, D-80805 Munich, Germany
关键词
OSCILLATIONS;
D O I
10.1103/PhysRevD.107.103006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Neutrinos propagating in a dense neutrino gas, such as those expected in core-collapse supernovae (CCSNe) and neutron star mergers (NSMs), can experience fast flavor conversions on relatively short scales. This can happen if the neutrino electron lepton number (nu ELN) angular distribution crosses zero in a certain direction. Despite this, most of the state-of-the-art CCSN and NSM simulations do not provide such detailed angular information and instead, supply only a few moments of the neutrino angular distributions. In this study we employ, for the first time, a machine learning (ML) approach to this problem and show that it can be extremely successful in detecting nu ELN crossings on the basis of its zeroth and first moments. We observe that an accuracy of similar to 95% can be achieved by the ML algorithms, which almost corresponds to the Bayes error rate of our problem. Considering its remarkable efficiency and agility, the ML approach provides one with an unprecedented opportunity to evaluate the occurrence of fast flavor conversions in CCSN and NSM simulations on the fly. We also provide our ML methodologies on GitHub.
引用
收藏
页数:10
相关论文
共 70 条
[1]   On the characteristics of fast neutrino flavor instabilities in three-dimensional core-collapse supernova models [J].
Abbar, Sajad ;
Capozzi, Francesco ;
Glas, Robert ;
Janka, H-Thomas ;
Tamborra, Irene .
PHYSICAL REVIEW D, 2021, 103 (06)
[2]   Searching for fast neutrino flavor conversion modes in core-collapse supernova simulations [J].
Abbar, Sajad .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2020, (05)
[3]   On fast neutrino flavor conversion modes in the nonlinear regime [J].
Abbar, Sajad ;
Volpe, Maria Cristina .
PHYSICS LETTERS B, 2019, 790 :545-550
[4]  
[Anonymous], About us
[5]   Identification of binary neutron star mergers in gravitational-wave data using object-detection machine learning models [J].
Aveiro, Joao ;
Freitas, Felipe F. ;
Ferreira, Marcio ;
Onofre, Antonio ;
Providencia, Constanca ;
Goncalves, Goncalo ;
Font, Jose A. .
PHYSICAL REVIEW D, 2022, 106 (08)
[6]   Linear analysis of fast-pairwise collective neutrino oscillations in core-collapse supernovae based on the results of Boltzmann simulations [J].
Azari, Milad Delfan ;
Yamada, Shoichi ;
Morinaga, Taiki ;
Iwakami, Wakana ;
Okawa, Hirotada ;
Nagakura, Hiroki ;
Sumiyoshi, Kohsuke .
PHYSICAL REVIEW D, 2019, 99 (10)
[7]   Fast Flavor Depolarization of Supernova Neutrinos [J].
Bhattacharyya, Soumya ;
Dasgupta, Basudeb .
PHYSICAL REVIEW LETTERS, 2021, 126 (06)
[8]   Muon Creation in Supernova Matter Facilitates Neutrino-Driven Explosions [J].
Bollig, R. ;
Janka, H. -T. ;
Lohs, A. ;
Martinez-Pinedo, G. ;
Horowitz, C. J. ;
Melson, T. .
PHYSICAL REVIEW LETTERS, 2017, 119 (24)
[9]   Supernova fast flavor conversions in 1+1D: Influence of mu-tau neutrinos [J].
Capozzi, Francesco ;
Chakraborty, Madhurima ;
Chakraborty, Sovan ;
Sen, Manibrata .
PHYSICAL REVIEW D, 2022, 106 (08)
[10]   Fast neutrino flavor conversions in one-dimensional core-collapse supernova models with and without muon creation [J].
Capozzi, Francesco ;
Abbar, Sajad ;
Bollig, Robert ;
Janka, H-Thomas .
PHYSICAL REVIEW D, 2021, 103 (06)