Pressure-relaxation limit for a one-velocity Baer-Nunziato model to a Kapila model

被引:7
作者
Burtea, Cosmin [1 ,2 ]
Crin-Barat, Timothee [3 ,4 ]
Tan, Jin [5 ]
机构
[1] Univ Paris Cite, F-75013 Paris, France
[2] Sorbonne Univ, CNRS, IMJ PRG, F-75013 Paris, France
[3] Friedrich Alexander Univ Erlangen Nurnberg, Dynam Control & Numer, D-91058 Erlangen, Germany
[4] Friedrich Alexander Univ Erlangen Nurnberg, Dept Data Sci, D-91058 Erlangen, Germany
[5] Cergy Paris Univ, Lab Math AGM, UMR CNRS 8088, 2 Ave Adolphe Chauvin, F-95302 Cergy Pontoise, France
基金
欧洲研究理事会;
关键词
Baer-Nunziato; one-velocity bifluid system; pressure-relaxation limit; Kapila system; non-conservative quasilinear systems; DISSIPATIVE HYPERBOLIC SYSTEMS; TO-DETONATION TRANSITION; COMPRESSIBLE MULTIFLUID; CLASSICAL-SOLUTIONS; GLOBAL EXISTENCE;
D O I
10.1142/S0218202523500161
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a singular limit problem for a compressible one-velocity bifluid system. More precisely, we show that solutions of the Kapila system generated by initial data close to equilibrium are obtained in the pressure-relaxation limit from solutions of the Baer-Nunziato (BN) system. The convergence rate of this process is a consequence of our stability result. Besides the fact that the quasilinear part of the (BN) system cannot be written in conservative form, its natural associated entropy is only positive semi-definite such that it is not clear if the entropic variables can be used in the present case. Using an ad-hoc change of variables we obtain a reformulation of the (BN) system which couples, via low-order terms, an undamped mode and a non-symmetric partially dissipative hyperbolic system satisfying the Shizuta-Kawashima stability condition.
引用
收藏
页码:687 / 753
页数:67
相关论文
共 44 条
[1]  
[Anonymous], 2007, Oxford Mathematical Monographs
[2]   A 2-PHASE MIXTURE THEORY FOR THE DEFLAGRATION-TO-DETONATION TRANSITION (DDT) IN REACTIVE ANTIGRANULOCYTES-MATERIALS [J].
BAER, MR ;
NUNZIATO, JW .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 1986, 12 (06) :861-889
[3]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[4]   Large Time Asymptotics for Partially Dissipative Hyperbolic Systems [J].
Beauchard, Karine ;
Zuazua, Enrique .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 199 (01) :177-227
[5]   NOTE ON THE DERIVATION OF MULTI-COMPONENT FLOW SYSTEMS [J].
Bresch, D. ;
Hillairet, M. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (08) :3429-3443
[6]   A Multi-Fluid Compressible System as the Limit of Weak Solutions of the Isentropic Compressible Navier-Stokes Equations [J].
Bresch, D. ;
Huang, X. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 201 (02) :647-680
[7]  
Bresch D., 2020, ARXIV
[8]  
Bresch D., 2022, MATH JUSTIFICATION C
[9]   Mathematical justification of a compressible bifluid system with different pressure laws: a continuous approach [J].
Bresch, Didier ;
Burtea, Cosmin ;
Lagoutiere, Frederic .
APPLICABLE ANALYSIS, 2022, 101 (12) :4235-4266
[10]   A COMPRESSIBLE MULTIFLUID SYSTEM WITH NEW PHYSICAL RELAXATION TERMS [J].
Bresch, Didier ;
Hillairet, Matthieu .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2019, 52 (02) :255-295