Synergistic Surface Modification of Tin-Lead Perovskite Solar Cells

被引:62
作者
Hu, Shuaifeng [1 ]
Zhao, Pei [1 ,2 ]
Nakano, Kyohei [3 ]
Oliver, Robert D. J. [4 ]
Pascual, Jorge
Smith, Joel A. [4 ]
Yamada, Takumi [1 ]
Truong, Minh Anh [1 ]
Murdey, Richard [1 ]
Shioya, Nobutaka [1 ]
Hasegawa, Takeshi [1 ]
Ehara, Masahiro [2 ]
Johnston, Michael B. [4 ]
Tajima, Keisuke [3 ]
Kanemitsu, Yoshihiko [1 ]
Snaith, Henry J. [4 ]
Wakamiya, Atsushi [1 ]
机构
[1] Kyoto Univ, Inst Chem Res, Uji, Kyoto 6110011, Japan
[2] Inst Mol Sci, Res Ctr Computat Sci, Okazaki 4448585, Japan
[3] RIKEN Ctr Emergent Matter Sci CEMS, Wako, Saitama 3510198, Japan
[4] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
基金
英国工程与自然科学研究理事会;
关键词
coordination; interfacial chemistry; perovskites; solar cells; surface defects; TRIHALIDE PEROVSKITE; ION MIGRATION; EFFICIENCY; PASSIVATION; PROGRESS; LIMIT; OXIDE;
D O I
10.1002/adma.202208320
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Interfaces in thin-film photovoltaics play a pivotal role in determining device efficiency and longevity. In this work, the top surface treatment of mixed tin-lead (approximate to 1.26 eV) halide perovskite films for p-i-n solar cells is studied. Charge extraction is promoted by treating the perovskite surface with piperazine. This compound reacts with the organic cations at the perovskite surface, modifying the surface structure and tuning the interfacial energy level alignment. In addition, the combined treatment with C-60 pyrrolidine tris-acid (CPTA) reduces hysteresis and leads to efficiencies up to 22.7%, with open-circuit voltage values reaching 0.90 V, approximate to 92% of the radiative limit for the bandgap of this material. The modified cells also show superior stability, with unencapsulated cells retaining 96% of their initial efficiency after >2000 h of storage in N-2 and encapsulated cells retaining 90% efficiency after >450 h of storage in air. Intriguingly, CPTA preferentially binds to Sn2+ sites at film surface over Pb2+ due to the energetically favored exposure of the former, according to first-principles calculations. This work provides new insights into the surface chemistry of perovskite films in terms of their structural, electronic, and defect characteristics and this knowledge is used to fabricate state-of-the-art solar cells.
引用
收藏
页数:11
相关论文
共 79 条
  • [11] Origin of J-V Hysteresis in Perovskite Solar Cells
    Chen, Bo
    Yang, Mengjin
    Priya, Shashank
    Zhu, Kai
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (05): : 905 - 917
  • [12] Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells
    Chen, Hao
    Teale, Sam
    Chen, Bin
    Hou, Yi
    Grater, Luke
    Zhu, Tong
    Bertens, Koen
    Park, So Min
    Atapattu, Harindi R.
    Gao, Yajun
    Wei, Mingyang
    Johnston, Andrew K.
    Zhou, Qilin
    Xu, Kaimin
    Yu, Danni
    Han, Congcong
    Cui, Teng
    Jung, Eui Hyuk
    Zhou, Chun
    Zhou, Wenjia
    Proppe, Andrew H.
    Hoogland, Sjoerd
    Laquai, Frederic
    Filleter, Tobin
    Graham, Kenneth R.
    Ning, Zhijun
    Sargent, Edward H.
    [J]. NATURE PHOTONICS, 2022, 16 (05) : 352 - +
  • [13] Phase-Pure Quasi-2D Perovskite by Protonation of Neutral Amine
    Dessimoz, Marc
    Yoo, So-Min
    Kanda, Hiroyuki
    Igci, Cansu
    Kim, Hobeom
    Nazeeruddin, Mohammad Khaja
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (46) : 11323 - 11329
  • [14] Crystallization Dynamics of Sn-Based Perovskite Thin Films: Toward Efficient and Stable Photovoltaic Devices
    Dong, He
    Ran, Chenxin
    Gao, Weiyin
    Sun, Nan
    Liu, Xin
    Xia, Yingdong
    Chen, Yonghua
    Huang, Wei
    [J]. ADVANCED ENERGY MATERIALS, 2022, 12 (01)
  • [15] The Functions of Fullerenes in Hybrid Perovskite Solar Cells
    Fang, Yanjun
    Bi, Cheng
    Wang, Dong
    Huang, Jinsong
    [J]. ACS ENERGY LETTERS, 2017, 2 (04): : 782 - 794
  • [16] Nanoscale chemical heterogeneity dominates the optoelectronic response of alloyed perovskite solar cells
    Frohna, Kyle
    Anaya, Miguel
    Macpherson, Stuart
    Sung, Jooyoung
    Doherty, Tiarnan A. S.
    Chiang, Yu-Hsien
    Winchester, Andrew J.
    Orr, Kieran W. P.
    Parker, Julia E.
    Quinn, Paul D.
    Dani, Keshav M.
    Rao, Akshay
    Stranks, Samuel D.
    [J]. NATURE NANOTECHNOLOGY, 2022, 17 (02) : 190 - 196
  • [17] Origin of Pronounced Nonlinear Band Gap Behavior in Lead-Tin Hybrid Perovskite Alloys
    Goyal, Anuj
    McKechnie, Scott
    Pashov, Dimitar
    Tumas, William
    van Schilfgaarde, Mark
    Stevanovic, Vladan
    [J]. CHEMISTRY OF MATERIALS, 2018, 30 (11) : 3920 - 3928
  • [18] Solar cell efficiency tables (version 52)
    Green, Martin A.
    Hishikawa, Yoshihiro
    Dunlop, Ewan D.
    Levi, Dean H.
    Hohl-Ebinger, Jochen
    Ho-Baillie, Anita W. Y.
    [J]. PROGRESS IN PHOTOVOLTAICS, 2018, 26 (07): : 427 - 436
  • [19] Green MA, 2014, NAT PHOTONICS, V8, P506, DOI [10.1038/NPHOTON.2014.134, 10.1038/nphoton.2014.134]
  • [20] Tin and Mixed Lead-Tin Halide Perovskite Solar Cells: Progress and their Application in Tandem Solar Cells
    Gu, Shuai
    Lin, Renxing
    Han, Qiaolei
    Gao, Yuan
    Tan, Hairen
    Zhu, Jia
    [J]. ADVANCED MATERIALS, 2020, 32 (27)