A p-Adic Model of Quantum States and the p-Adic Qubit

被引:3
|
作者
Aniello, Paolo [1 ,2 ]
Mancini, Stefano [3 ,4 ]
Parisi, Vincenzo [3 ,4 ]
机构
[1] Univ Napoli Federico II, Dipartimento Fis Ettore Pancini, Complesso Univ Monte S Angelo,Via Cintia, I-80126 Naples, Italy
[2] Ist Nazl Fis Nucl, Sez Napoli, Complesso Univ Monte S Angelo,Via Cintia, I-80126 Naples, Italy
[3] Univ Camerino, Sch Sci & Technol, Via Madonna delle Carceri 9, I-62032 Camerino, Italy
[4] Ist Nazl Fis Nucl, Sez Perugia, Via A Pascoli, I-06123 Perugia, Italy
关键词
ultrametric field; p-adic quantum mechanics; quantum state; p-adic probability; REPRESENTATION; MECHANICS; PROBABILITY;
D O I
10.3390/e25010086
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a model of a quantum N-dimensional system (quNit) based on a quadratic extension of the non-Archimedean field of p-adic numbers. As in the standard complex setting, states and observables of a p-adic quantum system are implemented by suitable linear operators in a p-adic Hilbert space. In particular, owing to the distinguishing features of p-adic probability theory, the states of an N-dimensional p-adic quantum system are implemented by p-adic statistical operators, i.e., trace-one selfadjoint operators in the carrier Hilbert space. Accordingly, we introduce the notion of selfadjoint-operator-valued measure (SOVM)-a suitable p-adic counterpart of a POVM in a complex Hilbert space-as a convenient mathematical tool describing the physical observables of a p-adic quantum system. Eventually, we focus on the special case where N=2, thus providing a description of p-adic qubit states and 2-dimensional SOVMs. The analogies-but also the non-trivial differences-with respect to the qubit states of standard quantum mechanics are then analyzed.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Invariant measures on p-adic Lie groups: the p-adic quaternion algebra and the Haar integral on the p-adic rotation groups
    Aniello, Paolo
    L'Innocente, Sonia
    Mancini, Stefano
    Parisi, Vincenzo
    Svampa, Ilaria
    Winter, Andreas
    LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (03)
  • [42] P-ADIC DIFFERENTIABILITY
    WEISMAN, CS
    JOURNAL OF NUMBER THEORY, 1977, 9 (01) : 79 - 86
  • [43] p-adic Cohomology
    Kedlaya, Kiran S.
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS: ALGEBRAIC GEOMETRY SEATTLE 2005, VOL 80, PTS 1 AND 2, 2009, 80 : 667 - 684
  • [44] THE P-ADIC SPECTRUM
    ROBINSON, E
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1986, 40 (03) : 281 - 296
  • [45] ON P-ADIC MONODROMY
    STIENSTRA, J
    VANDERPUT, M
    VANDERMAREL, B
    MATHEMATISCHE ZEITSCHRIFT, 1991, 208 (02) : 309 - 325
  • [46] P-ADIC CONVEXITIES
    JAMISON, RE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (02): : A272 - A272
  • [47] P-ADIC STRING
    VOLOVICH, IV
    CLASSICAL AND QUANTUM GRAVITY, 1987, 4 (04) : L83 - L87
  • [48] p-adic inflation
    Barnaby, Neil
    Biswas, Tirthabir
    Cline, James M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (04):
  • [49] On p-adic classification
    Patrick Erik Bradley
    P-Adic Numbers, Ultrametric Analysis, and Applications, 2009, 1 (4) : 271 - 285
  • [50] P-ADIC NUMBERS
    BARSKY, D
    CHRISTOL, G
    RECHERCHE, 1995, 26 (278): : 766 - 771