A p-Adic Model of Quantum States and the p-Adic Qubit
被引:3
|
作者:
Aniello, Paolo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Napoli Federico II, Dipartimento Fis Ettore Pancini, Complesso Univ Monte S Angelo,Via Cintia, I-80126 Naples, Italy
Ist Nazl Fis Nucl, Sez Napoli, Complesso Univ Monte S Angelo,Via Cintia, I-80126 Naples, ItalyUniv Napoli Federico II, Dipartimento Fis Ettore Pancini, Complesso Univ Monte S Angelo,Via Cintia, I-80126 Naples, Italy
Aniello, Paolo
[1
,2
]
论文数: 引用数:
h-index:
机构:
Mancini, Stefano
[3
,4
]
Parisi, Vincenzo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Camerino, Sch Sci & Technol, Via Madonna delle Carceri 9, I-62032 Camerino, Italy
Ist Nazl Fis Nucl, Sez Perugia, Via A Pascoli, I-06123 Perugia, ItalyUniv Napoli Federico II, Dipartimento Fis Ettore Pancini, Complesso Univ Monte S Angelo,Via Cintia, I-80126 Naples, Italy
Parisi, Vincenzo
[3
,4
]
机构:
[1] Univ Napoli Federico II, Dipartimento Fis Ettore Pancini, Complesso Univ Monte S Angelo,Via Cintia, I-80126 Naples, Italy
[2] Ist Nazl Fis Nucl, Sez Napoli, Complesso Univ Monte S Angelo,Via Cintia, I-80126 Naples, Italy
[3] Univ Camerino, Sch Sci & Technol, Via Madonna delle Carceri 9, I-62032 Camerino, Italy
[4] Ist Nazl Fis Nucl, Sez Perugia, Via A Pascoli, I-06123 Perugia, Italy
We propose a model of a quantum N-dimensional system (quNit) based on a quadratic extension of the non-Archimedean field of p-adic numbers. As in the standard complex setting, states and observables of a p-adic quantum system are implemented by suitable linear operators in a p-adic Hilbert space. In particular, owing to the distinguishing features of p-adic probability theory, the states of an N-dimensional p-adic quantum system are implemented by p-adic statistical operators, i.e., trace-one selfadjoint operators in the carrier Hilbert space. Accordingly, we introduce the notion of selfadjoint-operator-valued measure (SOVM)-a suitable p-adic counterpart of a POVM in a complex Hilbert space-as a convenient mathematical tool describing the physical observables of a p-adic quantum system. Eventually, we focus on the special case where N=2, thus providing a description of p-adic qubit states and 2-dimensional SOVMs. The analogies-but also the non-trivial differences-with respect to the qubit states of standard quantum mechanics are then analyzed.