Genome-Wide Identification and Expression Analysis of Response Regulators Family Genes in Chinese Hickory (Carya cathayensis) Suggests Their Potential Roles during Grafting

被引:6
|
作者
Tao, Shenchen [1 ,2 ]
Zhao, Lu [1 ,2 ]
Mei, Jiaqi [1 ,2 ]
Abbas, Farhat [1 ,2 ]
Xie, Xiaoting [1 ,2 ]
Yang, Ying [1 ,2 ]
Huang, Qiaoyu [1 ,2 ]
Wang, Jiayan [1 ,2 ]
Yuan, Huwei [1 ,2 ]
Sharma, Anket [1 ,2 ]
He, Yi [1 ,2 ]
Zheng, Bingsong [1 ,2 ]
Wang, Xiaofei [1 ,2 ]
机构
[1] Zhejiang A&F Univ, State Key Lab Subtrop Silviculture, Hangzhou 311300, Peoples R China
[2] Zhejiang A&F Univ, Zhejiang Prov Key Lab Forest Aromat Plants Based H, Hangzhou 311300, Peoples R China
基金
国家高技术研究发展计划(863计划); 中国博士后科学基金; 中国国家自然科学基金;
关键词
Cytokinin; Response regulator; Gene expression; Gene family; Grafting; Chinese hickory; CYTOKININ SIGNAL-TRANSDUCTION; NEGATIVE REGULATOR; ARABIDOPSIS; ARR10; PHOSPHORYLATION; DIFFERENTIATION; OVEREXPRESSION; ELEMENTS; DATABASE; SHOOT;
D O I
10.1007/s00344-022-10898-6
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The response regulator (RR) genes play a crucial function in the cytokinin signaling pathway and in activating the downstream genes to respond to cytokinin in the two-component system. However, the characteristics and expression patterns of RR genes in Chinese hickory (Carya cathayensis) are still less studied. In this study, 17 CcRR genes were identified from Chinese hickory, including 8 type-A CcRRs, 8 type-B CcRRs, and 1 type-C CcRR. All type-B and some type-A CcRRs (CcRR5/9a/9b) were nucleus-localized, whereas the other type-A CcRRs (CcRR3/4/8/16/17) and type-C CcRRs (CcRR22) were nucleus- and cytomembrane-localized. All CcRRs encoded hydrophilic proteins with receptor domain. Numerous phytohormone-related cis-regulatory elements were detected on the promoter sequences of CcRRs, and qRT-PCR data verified that the majority of CcRR genes showed a noticeable responsiveness to various hormones, particularly CcRR1, CcRR3, and CcRR8. The tissue-specific expression analysis revealed that the majority of genes were expressed in all tissues, but a few were tissue-specific, such as CcRR4 in the embryo, CcRR10 in the roots, CcRR14b in the pericarps, and CcRR22 in the testae. Expression profiles of CcRRs during the critical periods of grafting success showed that two CcRRs (CcRR4 and CcRR22) were significantly down-regulated to less than 10% of the original, indicating that these genes might function as negative regulators in the grafting process. In contrast, the expression levels of some genes were up-regulated by 2-10 times at various stages of the grafting, implying that they might play a positive role in the grafting process. Results from this study will provide the basis for further understanding the mechanisms of cytokinin in regulating the grafting process of Chinese hickory.
引用
收藏
页码:5099 / 5115
页数:17
相关论文
共 50 条
  • [21] Genome-wide identification and expression analysis of DREB family genes in cotton
    Jiuchang Su
    Shanglin Song
    Yiting Wang
    Yunpeng Zeng
    Tianyu Dong
    Xiaoyang Ge
    Hongying Duan
    BMC Plant Biology, 23
  • [22] Genome-wide identification of CBL family and expression analysis of CBLs in response to potassium deficiency in cotton
    Lu, Tingting
    Zhang, Gaofeng
    Sun, Lirong
    Wang, Ji
    Hao, Fushun
    PEERJ, 2017, 5
  • [23] Genome-wide identification and expression analysis of the cucumber PYL gene family
    Zhang, Zeyu
    Luo, Shilei
    Liu, Zeci
    Wan, Zilong
    Gao, Xueqin
    Qiao, Yali
    Yu, Jihua
    Zhang, Guobin
    PEERJ, 2022, 10
  • [24] Genome-wide identification, phylogenetic analysis, and expression profiling of the BBX family genes in pear
    Zou, Zhiyan
    Wang, Rihong
    Wang, Ran
    Yang, Shaolan
    Yang, Yingjie
    JOURNAL OF HORTICULTURAL SCIENCE & BIOTECHNOLOGY, 2018, 93 (01) : 37 - 50
  • [25] Genome-wide identification, characterization, and expression analysis of MIPS family genes in legume species
    Jacob, Feba
    Hamid, Rasmieh
    Ghorbanzadeh, Zahra
    Valsalan, Ravisankar
    Ajinath, Lavale Shivaji
    Mathew, Deepu
    BMC GENOMICS, 2024, 25 (01):
  • [26] Genome-wide identification and expression profiles analysis of the authentic response regulator gene family in licorice
    Shi, Yanping
    Ding, Guohua
    Shen, Haitao
    Li, Zihan
    Li, Hongbin
    Xiao, Guanghui
    FRONTIERS IN PLANT SCIENCE, 2024, 14
  • [27] Genome-wide identification and expression analysis of the glycosyl hydrolase family 1 genes in Medicago sativa revealed their potential roles in response to multiple abiotic stresses
    Kong, Haiming
    Song, Jiaxing
    Ma, Shihai
    Yang, Jing
    Shao, Zitong
    Li, Qian
    Li, Zhongxing
    Xie, Zhiguo
    Yang, Peizhi
    Cao, Yuman
    BMC GENOMICS, 2024, 25 (01)
  • [28] Genome-Wide Identification and Expression Analysis of BrBASS Genes in Brassica rapa Reveals Their Potential Roles in Abiotic Stress Tolerance
    Ji, Zhaojing
    Wang, Ruolan
    Zhang, Meiqi
    Chen, Luhan
    Wang, Yuexin
    Hui, Jiyun
    Hao, Shiya
    Lv, Bingcan
    Jiang, Qiwei
    Cao, Yunyun
    CURRENT ISSUES IN MOLECULAR BIOLOGY, 2024, 46 (07) : 6646 - 6664
  • [29] Genome-wide expression analysis suggests glutaredoxin genes response to various stresses in cotton
    Malik, Waqar Afzal
    Wang, Xiaoge
    Wang, Xinlei
    Shu, Na
    Cui, Ruifeng
    Chen, Xiugui
    Wang, Delong
    Lu, Xuke
    Yin, Zujun
    Wang, Junjuan
    Ye, Wuwei
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 153 : 470 - 491
  • [30] Genome-Wide Identification and Expression Analysis of BrATGs and Their Different Roles in Response to Abiotic Stresses in Chinese Cabbage
    Hu, Yuanfeng
    Zhang, Ming
    Yin, Fengrui
    Cao, Xiaoqun
    Fan, Shuying
    Wu, Caijun
    Xiao, Xufeng
    AGRONOMY-BASEL, 2022, 12 (12):