Hesitant Fuzzy Structures on Sheffer Stroke BCK-Algebras

被引:0
|
作者
Oner, Tahsin [1 ]
Katican, Tugce [2 ]
Saeid, Arsham Borumand [3 ]
机构
[1] Ege Univ, Fac Sci, Dept Math, TR-35100 Izmir, Turkey
[2] Izmir Univ Econ, Fac Arts & Sci, Dept Math, Izmir, Turkey
[3] Shadid Bahonar Univ Kerman, Fac Math & Comp, Dept Pure Math, Kerman, Iran
关键词
Sheffer stroke; BCK-algebra; (hesitant fuzzy) subalgebra; ((hesitant fuzzy) maximal) ideal; SET;
D O I
10.1142/S1793005723500369
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main objective of the study is to introduce a hesitant fuzzy structures on Sheffer stroke BCK-algebras related to their subsets (subalgebras as possible as). Then it is proved that every hesitant fuzzy ideal of a Sheffer stroke BCK-algebra related to the subset is the hesitant fuzzy subalgebra. By defining a hesitant fuzzy maximal ideal in this algebra, relationships between aforementioned structures, subalgebras and ideals on Sheffer stroke BCK-algebras are shown in detail. Finally, it is illustrated that a subset of a Sheffer stroke BCK-algebra defined by a certain element and a hesitant fuzzy (maximal) ideal on the algebra is a (maximal) ideal but the inverse is usually not true.
引用
收藏
页码:793 / 804
页数:12
相关论文
共 50 条
  • [31] Bounded BCK-algebras of fractions and maximal BCK-algebra of quotients
    Dumitru Buşneag
    Dana Piciu
    Soft Computing, 2012, 16 : 1697 - 1705
  • [32] Free Algebras in Finitely Generated Varieties of Commutative BCK-algebras
    Cenker, Vaclav
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2025,
  • [33] Hesitant fuzzy translations and extensions of subalgebras and ideals in BCK/BCI-algebras
    Muhiuddin, G.
    Kim, Hee Sik
    Song, Seok Zun
    Jun, Young Bae
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 32 (01) : 43 - 48
  • [34] A topology on BCK-algebras via left and right stabilizers
    Roudabri, T.
    Torkzadeh, L.
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2009, 4 (02): : 1 - 8
  • [35] On linear fuzzifications of groupoids with special emphasis on BCK-algebras
    Han, Jeong Soon
    Kim, Hee Sik
    Neggers, J.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2013, 24 (01) : 105 - 110
  • [36] Representations of Sheffer stroke algebras and Visser algebras
    Ali Molkhasi
    Soft Computing, 2021, 25 : 8533 - 8538
  • [37] The finite embeddability property for residuated lattices, pocrims and BCK-algebras
    Blok, WJ
    van Alten, CJ
    ALGEBRA UNIVERSALIS, 2002, 48 (03) : 253 - 271
  • [38] Representations of Sheffer stroke algebras and Visser algebras
    Molkhasi, Ali
    SOFT COMPUTING, 2021, 25 (13) : 8533 - 8538
  • [39] On Fuzzy Sheffer Stroke Operation
    Helbin, Piotr
    Niemyska, Wanda
    Berruezo, Pedro
    Massanet, Sebastia
    Ruiz-Aguilera, Daniel
    Baczynski, Michal
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING (ICAISC 2018), PT II, 2018, 10842 : 642 - 651
  • [40] Sheffer Stroke Fuzzy Implications
    Niemyska, Wanda
    Baczynski, Michal
    Wasowicz, Szymon
    ADVANCES IN FUZZY LOGIC AND TECHNOLOGY 2017, VOL 3, 2018, 643 : 13 - 24