A New Approach for Regression Analysis of Multivariate Current Status Data with Informative Censoring

被引:0
作者
Li, Huiqiong [1 ]
Ma, Chenchen [2 ]
Sun, Jianguo [2 ]
Tang, Niansheng [1 ]
机构
[1] Yunnan Univ, Dept Stat, Kunming 650091, Yunnan, Peoples R China
[2] Univ Missouri, Dept Stat, Columbia, MO 65211 USA
关键词
Additive hazards model; Current status data; Informative censoring; PROPORTIONAL HAZARDS MODEL;
D O I
10.1007/s40304-021-00274-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Regression analysis of interval-censored failure time data has recently attracted a great deal of attention partly due to their increasing occurrences in many fields. In this paper, we discuss a type of such data, multivariate current status data, where in addition to the complex interval data structure, one also faces dependent or informative censoring. For inference, a sieve maximum likelihood estimation procedure is developed and the proposed estimators of regression parameters are shown to be asymptotically consistent and efficient. For the implementation of the method, an EM algorithm is provided, and the results from an extensive simulation study demonstrate the validity and good performance of the proposed inference procedure. For an illustration, the proposed approach is applied to a tumorigenicity experiment.
引用
收藏
页码:775 / 794
页数:20
相关论文
共 31 条
  • [11] Regression analysis of bivariate current status data under the proportional hazards model
    Hu, Tao
    Zhou, Qingning
    Sun, Jianguo
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2017, 45 (04): : 410 - 424
  • [12] Bivariate current status data with univariate monitoring times
    Jewell, NP
    van der Laan, M
    Lei, X
    [J]. BIOMETRIKA, 2005, 92 (04) : 847 - 862
  • [13] Kalbfleisch J, 1980, STAT ANAL FAILURE TI, DOI DOI 10.1002/9781118032985
  • [14] Regression analysis of current status data in the presence of dependent censoring with applications to tumorigenicity experiments
    Li, Shuwei
    Hu, Tao
    Wang, Peijie
    Sun, Jianguo
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 110 : 75 - 86
  • [15] Additive hazards regression with current status data
    Lin, DY
    Oakes, D
    Ying, ZL
    [J]. BIOMETRIKA, 1998, 85 (02) : 289 - 298
  • [16] Regression analysis of current status data in the presence of a cured subgroup and dependent censoring
    Liu, Yeqian
    Hu, Tao
    Sun, Jianguo
    [J]. LIFETIME DATA ANALYSIS, 2017, 23 (04) : 626 - 650
  • [17] Estimation of the mean function with panel count data using monotone polynomial splines
    Lu, Minggen
    Zhang, Ying
    [J]. BIOMETRIKA, 2007, 94 (03) : 705 - 718
  • [18] Sieve maximum likelihood regression analysis of dependent current status data
    Ma, Ling
    Hu, Tao
    Sun, Jianguo
    [J]. BIOMETRIKA, 2015, 102 (03) : 731 - 738
  • [19] National Toxicology Program, 1998, 467 US DEP HLTH HUM
  • [20] SIMULATION AND THE ASYMPTOTICS OF OPTIMIZATION ESTIMATORS
    PAKES, A
    POLLARD, D
    [J]. ECONOMETRICA, 1989, 57 (05) : 1027 - 1057