Multimodal data integration for predicting progression risk in castration-resistant prostate cancer using deep learning: a multicenter retrospective study

被引:5
作者
Zhou, Chuan [1 ,2 ]
Zhang, Yun-Feng [3 ]
Guo, Sheng [3 ]
Huang, Yu-Qian [4 ]
Qiao, Xiao-Ni [5 ]
Wang, Rong [1 ,6 ]
Zhao, Lian-Ping [3 ,6 ]
Chang, De-Hui [3 ,5 ]
Zhao, Li-Ming [7 ]
Da, Ming-Xu [1 ,2 ,3 ]
Zhou, Feng-Hai [1 ,2 ,3 ,8 ]
机构
[1] Lanzhou Univ, Clin Med Coll 1, Lanzhou, Peoples R China
[2] Gansu Prov Hosp, Natl Hlth Commiss Peoples Republ China NHC Key Lab, Lanzhou, Peoples R China
[3] Gansu Univ Chinese Med, Clin Med Coll 1, Lanzhou, Peoples R China
[4] Chengdu Second Peoples Hosp, Dept Ctr Med Cosmetol, Chengdu, Peoples R China
[5] 940 Hosp Joint Logist Support Force Chinese PLA, Dept Urol, Lanzhou, Peoples R China
[6] Gansu Prov Hosp, Dept Radiol, Lanzhou, Peoples R China
[7] Second Peoples Hosp Gansu Prov, Dept Urol, Lanzhou, Peoples R China
[8] Gansu Prov Hosp, Dept Urol, Lanzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
radiomics; pathomics; castration-resistant prostate cancer; deep learning; multi-modal; CELLS;
D O I
10.3389/fonc.2024.1287995
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose Patients with advanced prostate cancer (PCa) often develop castration-resistant PCa (CRPC) with poor prognosis. Prognostic information obtained from multiparametric magnetic resonance imaging (mpMRI) and histopathology specimens can be effectively utilized through artificial intelligence (AI) techniques. The objective of this study is to construct an AI-based CRPC progress prediction model by integrating multimodal data.Methods and materials Data from 399 patients diagnosed with PCa at three medical centers between January 2018 and January 2021 were collected retrospectively. We delineated regions of interest (ROIs) from 3 MRI sequences viz, T2WI, DWI, and ADC and utilized a cropping tool to extract the largest section of each ROI. We selected representative pathological hematoxylin and eosin (H&E) slides for deep-learning model training. A joint combined model nomogram was constructed. ROC curves and calibration curves were plotted to assess the predictive performance and goodness of fit of the model. We generated decision curve analysis (DCA) curves and Kaplan-Meier (KM) survival curves to evaluate the clinical net benefit of the model and its association with progression-free survival (PFS).Results The AUC of the machine learning (ML) model was 0.755. The best deep learning (DL) model for radiomics and pathomics was the ResNet-50 model, with an AUC of 0.768 and 0.752, respectively. The nomogram graph showed that DL model contributed the most, and the AUC for the combined model was 0.86. The calibration curves and DCA indicate that the combined model had a good calibration ability and net clinical benefit. The KM curve indicated that the model integrating multimodal data can guide patient prognosis and management strategies.Conclusion The integration of multimodal data effectively improves the prediction of risk for the progression of PCa to CRPC.
引用
收藏
页数:13
相关论文
共 40 条
[1]   Deep learning encodes robust discriminative neuroimaging representations to outperform standard machine learning [J].
Abrol, Anees ;
Fu, Zening ;
Salman, Mustafa ;
Silva, Rogers ;
Du, Yuhui ;
Plis, Sergey ;
Calhoun, Vince .
NATURE COMMUNICATIONS, 2021, 12 (01)
[2]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[3]   Reliability of Multiparametric Magnetic Resonance Imaging in Patients with a Previous Negative Biopsy: Comparison with Biopsy-Naive Patients in the Detection of Clinically Significant Prostate Cancer [J].
Barone, Biagio ;
Napolitano, Luigi ;
Calace, Francesco Paolo ;
Del Biondo, Dario ;
Napodano, Giorgio ;
Grillo, Marco ;
Reccia, Pasquale ;
De Luca, Luigi ;
Prezioso, Domenico ;
Muto, Matteo ;
Crocetto, Felice ;
Ferro, Matteo .
DIAGNOSTICS, 2023, 13 (11)
[4]   Predicting cancer outcomes with radiomics and artificial intelligence in radiology [J].
Bera, Kaustav ;
Braman, Nathaniel ;
Gupta, Amit ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
NATURE REVIEWS CLINICAL ONCOLOGY, 2022, 19 (02) :132-146
[5]   Machine Learning in Oncology: Methods, Applications, and Challenges [J].
Bertsimas, Dimitris ;
Wiberg, Holly .
JCO CLINICAL CANCER INFORMATICS, 2020, 4 :885-894
[6]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[7]   Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer [J].
Boehm, Kevin M. ;
Aherne, Emily A. ;
Ellenson, Lora ;
Nikolovski, Ines ;
Alghamdi, Mohammed ;
Vazquez-Garcia, Ignacio ;
Zamarin, Dmitriy ;
Roche, Kara Long ;
Liu, Ying ;
Patel, Druv ;
Aukerman, Andrew ;
Pasha, Arfath ;
Rose, Doori ;
Selenica, Pier ;
Causa Andrieu, Pamela I. ;
Fong, Chris ;
Capanu, Marinela ;
Reis-Filho, Jorge S. ;
Vanguri, Rami ;
Veeraraghavan, Harini ;
Gangai, Natalie ;
Sosa, Ramon ;
Leung, Samantha ;
McPherson, Andrew ;
Gao, JianJiong ;
Lakhman, Yulia ;
Shah, Sohrab P. .
NATURE CANCER, 2022, 3 (06) :723-+
[8]   Harnessing multimodal data integration to advance precision oncology [J].
Boehm, Kevin M. ;
Khosravi, Pegah ;
Vanguri, Rami ;
Gao, Jianjiong ;
Shah, Sohrab P. .
NATURE REVIEWS CANCER, 2022, 22 (02) :114-126
[9]   Artificial intelligence in diagnostic and interventional radiology: Where are we now? [J].
Boeken, Tom ;
Feydy, Jean ;
Lecler, Augustin ;
Soyer, Philippe ;
Feydy, Antoine ;
Barat, Maxime ;
Durona, Loic .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2023, 104 (01) :1-5
[10]  
Bray F, 2018, CA-CANCER J CLIN, V68, P394, DOI [10.3322/caac.21492, 10.3322/caac.21609]