Non-Resonant Structure Induces N-Rich Solid Electrolyte Interface toward Ultra-Stable Solid-State Lithium-Metal Batteries

被引:14
作者
Zhang, Shuoxiao [1 ]
Liu, Han [1 ]
Liu, Zhengbo [1 ]
Zhao, Yajun [2 ]
Yan, Jie [3 ]
Zhang, Yangqian [1 ]
Liu, Fangyan [1 ]
Liu, Qi [1 ]
Liu, Chen [4 ]
Sun, Gang [4 ]
Wang, Zhenbo [4 ]
Yang, Jiayi [1 ]
Ren, Yang [1 ,5 ,6 ]
机构
[1] City Univ Hong Kong, Dept Phys, Hong Kong 999077, Peoples R China
[2] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
[3] City Univ Hongkong, Dept Mat Sci & Engn, Hong Kong 999077, Peoples R China
[4] Shenzhen Univ, Coll Mat Sci & Engn, Shenzhen 518071, Peoples R China
[5] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
[6] City Univ Hong Kong, Ctr Neutron Scattering, Hong Kong 999077, Peoples R China
关键词
all-solid-state lithium batteries; dissociation of LiTFSI; N-rich solid electrolyte interface; polymer-based electrolytes;
D O I
10.1002/adfm.202401377
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The practical application of all-solid-state lithium metal batteries (ASSLMBs) is limited by lithium (Li) anode instability including Li dendrite formation and deteriorating interface with electrolytes. Here, a functional additive, isosorbide mononitrate (ISMN) with a non-resonant structure (O2-N-O-) is reported, which improves its reactivity and is utilized to build a stable N-rich solid electrolyte interface, effectively alleviating Li dendrite and side reactions for poly(vinylidene fluoride) (PVDF)-lithium bis(trifluoromethane sulfonyl) imide (LiTFSI)-based electrolyte (PLE-ISMN). In addition, the ion-dipole interaction between ISMN and Li ions facilitates the dissociation of LiTFSI to form carrier ions, improving the ionic conductivity (4.4 x 10-4 S cm-1) and transference number (0.50) of PLE-ISMN. Consequently, the Li/Li symmetric cell delivers a high critical current density of 2.0 mA cm-2 and stable Li stripping/plating cycling over 5000 h with a capacity of 1.0 mAh cm-2. Moreover, the Li|LiFePO4 cell delivers an excellent initial discharge capacity of 154.0 mAh g-1 with an outstanding capacity retention of 88.9% after 500 cycles at 0.5 C. The Li|LiNi0.8Co0.1Mn0.1O2 cell also exhibits a good cycling performance at 4.4 V at 1 C. A non-resonant nitrate ester, isosorbide mononitrate (ISMN) is introduced into PVDF-based polymer solid-state electrolyte, which breaks the resonance of three equal O atoms by connecting an ether-based group and the improve its reactivity. During the electrochemical process, the NO bond in non-resonant structure of ISMN is broken, inducing a N-rich solid electrolyte interface toward ultra-stable solid-state lithium-metal batteries. image
引用
收藏
页数:10
相关论文
共 54 条
[1]   Current Status and Future Perspective on Lithium Metal Anode Production Methods [J].
Acebedo, Begona ;
Morant-Minana, Maria C. ;
Gonzalo, Elena ;
de Larramendi, Idoia Ruiz ;
Villaverde, Aitor ;
Rikarte, Jokin ;
Fallarino, Lorenzo .
ADVANCED ENERGY MATERIALS, 2023, 13 (13)
[2]   Interfacial Issues and Modification of Solid Electrolyte Interphase for Li Metal Anode in Liquid and Solid Electrolytes [J].
Chae, Oh B. ;
Lucht, Brett L. .
ADVANCED ENERGY MATERIALS, 2023, 13 (14)
[3]   Regulation of Interphase Layer by Flexible Quasi-Solid Block Polymer Electrolyte to Achieve Highly Stable Lithium Metal Batteries [J].
Chai, Simin ;
Chang, Zhi ;
Zhong, Yue ;
He, Qiong ;
Wang, Yijiang ;
Wan, Yuanlang ;
Feng, MingYang ;
Hu, Yingzhu ;
Li, WeiHang ;
Wei, Weifeng ;
Pan, Anqiang .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (27)
[4]  
Chen DJ, 2023, ELECTRON-PRC, V1, DOI 10.1002/elt2.1
[5]   Amorphous silicon nitride induced high dielectric constant toward long-life solid lithium metal battery [J].
Cheng, Hang ;
Li, Dinggen ;
Xu, Bo ;
Wei, Ying ;
Wang, Haonan ;
Jiang, Bowen ;
Liu, Xueting ;
Xu, Henghui ;
Huang, Yunhui .
ENERGY STORAGE MATERIALS, 2022, 53 :305-314
[6]   A polyimine aerogel separator with electron cloud design to boost Li- ion transport for stable Li metal batteries [J].
Ding, Luoyi ;
Yue, Xinyang ;
Zhang, Xinhai ;
Chen, Yuanmao ;
Liu, Jijiang ;
Shi, Zhangqin ;
Wang, Zhiyong ;
Yan, Xuzhou ;
Liang, Zheng .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (51)
[7]   poly(vinylidene fluoride)-based dual-salt composite polymer electrolytes for superior room-temperature solid-state lithium batteries [J].
Fan, Kaibo ;
Lai, Xianxin ;
Zhang, Zhiqi ;
Chai, Lili ;
Yang, Qingchao ;
He, Guanghao ;
Liu, Song ;
Sun, Ling ;
Zhao, Yong ;
Hu, Zhengguang ;
Wang, Li .
JOURNAL OF POWER SOURCES, 2023, 580
[8]   Improving the cyclability of solid polymer electrolyte with porous V2O5 nanotube filler [J].
Feng, Tianshi ;
Hu, Yubing ;
Xu, Lei ;
Huang, Jinqiu ;
Hu, Sibo ;
Zhang, Lifeng ;
Luo, Langli .
MATERIALS TODAY ENERGY, 2022, 28
[9]   An organic additive assisting with high ionic conduction and dendrite resistance of polymer electrolytes [J].
Guan, Shundong ;
Wen, Kaihua ;
Liang, Ying ;
Xue, Chuanjiao ;
Liu, Sijie ;
Yu, Jinyao ;
Zhang, Zheng ;
Wu, Xinbin ;
Yuan, Haocheng ;
Lin, Zhiyuan ;
Yu, Haijun ;
Li, Liangliang ;
Nan, Ce-Wen .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (45) :24269-24279
[10]   High-Efficiency Lithium-Ion Transport in a Porous Coordination Chain-Based Hydrogen-Bonded Framework [J].
Han, Zongsu ;
Zhang, Runhao ;
Jiang, Jialong ;
Chen, Zhonghang ;
Ni, Youxuan ;
Xie, Weiwei ;
Xu, Jun ;
Zhou, Zhen ;
Chen, Jun ;
Cheng, Peng ;
Shi, Wei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (18) :10149-10158