Sterol-activated amyloid beta fibril formation

被引:2
|
作者
Cook, Ian [1 ]
Leyh, Thomas S. [1 ]
机构
[1] Albert Einstein Coll Med, Dept Microbiol & Immunol, Bronx, NY 10461 USA
基金
美国国家卫生研究院;
关键词
ALZHEIMERS-DISEASE; CHOLESTEROL SULFATE; A-BETA; CELL DIFFERENTIATION; SYNAPTIC PLASTICITY; BINDING-SITES; PEPTIDE; 1-42; PROTEIN; GROMACS; AGGREGATION;
D O I
10.1016/j.jbc.2023.105445
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The metabolic processes that link Alzheimer's disease (AD) to elevated cholesterol levels in the brain are not fully defined. Amyloid beta (A beta) plaque accumulation is believed to begin decades prior to symptoms and to contribute significantly to the disease. Cholesterol and its metabolites accelerate plaque formation through as-yet-undefined mechanisms. Here, the mechanism of cholesterol (CH) and cholesterol 3-sulfate (CS) induced acceleration of A beta 42 fibril formation is examined in quantitative ligand binding, A beta 42 fibril polymerization, and molecular dynamics studies. Equilibrium and pre-steady-state binding studies reveal that monomeric A beta 42 center dot ligand complexes form and dissociate rapidly relative to oligomerization, that the ligand/peptide stoichiometry is 1-to-1, and that the peptide is likely saturated in vivo. Analysis of A beta 42 polymerization progress curves demonstrates that ligands accelerate polymer synthesis by catalyzing the conversion of peptide monomers into dimers that nucleate the polymerization reaction. Nucleation is accelerated X49-fold by CH, and ,-,13,000fold by CS - a minor CH metabolite. Polymerization kinetic models predict that at presumed disease-relevant CS and CH concentrations, approximately half of the polymerization nuclei will contain CS, small oligomers of neurotoxic dimensions (-12-mers) will contain substantial CS, and fibrilformation lag times will decrease 13-fold relative to unliganded A beta 42. Molecular dynamics models, which quantitatively predict all experimental findings, indicate that the acceleration mechanism is rooted in ligand-induced stabilization of the peptide in non-helical conformations that readily form polymerization nuclei.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Perlecan binds to the beta-amyloid proteins (A beta) of Alzheimer's disease, accelerates A beta fibril formation, and maintains A beta fibril stability
    Castillo, GM
    Ngo, C
    Cummings, J
    Wight, TN
    Snow, AD
    JOURNAL OF NEUROCHEMISTRY, 1997, 69 (06) : 2452 - 2465
  • [22] Mechanisms of amyloid fibril formation
    N. V. Dovidchenko
    E. I. Leonova
    O. V. Galzitskaya
    Biochemistry (Moscow), 2014, 79 : 1515 - 1527
  • [23] Inhibition of insulin amyloid fibril formation by cyclodextrins
    Kitagawa, Keisuke
    Misumi, Yohei
    Ueda, Mitsuharu
    Hayashi, Yuya
    Tasaki, Masayoshi
    Obayashi, Konen
    Yamashita, Taro
    Jono, Hirofumi
    Arima, Hidetoshi
    Ando, Yukio
    AMYLOID-JOURNAL OF PROTEIN FOLDING DISORDERS, 2015, 22 (03): : 181 - 186
  • [24] Diversity of kinetic pathways in amyloid fibril formation
    Bellesia, Giovanni
    Shea, Joan-Emma
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (11)
  • [25] Studying the effects of chaperones on amyloid fibril formation
    Zhang, Hong
    Xu, Li-Qiong
    Perrett, Sarah
    METHODS, 2011, 53 (03) : 285 - 294
  • [26] Mechanisms of Amyloid Fibril Formation
    Dovidchenko, N. V.
    Leonova, E. I.
    Galzitskaya, O. V.
    BIOCHEMISTRY-MOSCOW, 2014, 79 (13) : 1515 - 1527
  • [27] Modeling amyloid fibril formation
    N. V. Dovidchenko
    O. V. Galzitskaya
    Biochemistry (Moscow), 2011, 76 : 366 - 373
  • [28] Modeling Amyloid Fibril Formation
    Dovidchenko, N. V.
    Galzitskaya, O. V.
    BIOCHEMISTRY-MOSCOW, 2011, 76 (03) : 366 - 373
  • [29] Mechanism of Fibril and Soluble Oligomer Formation in Amyloid Beta and Hen Egg White Lysozyme Proteins
    Perez, Carlos
    Miti, Tatiana
    Hasecke, Filip
    Meisl, Georg
    Hoyer, Wolfgang
    Muschol, Martin
    Ullah, Ghanim
    JOURNAL OF PHYSICAL CHEMISTRY B, 2019, 123 (27) : 5678 - 5689
  • [30] NFGAIL Amyloid Oligomers: The Onset of Beta-Sheet Formation and the Mechanism for Fibril Formation
    Hoffmann, Waldemar
    Folmert, Kristin
    Moschner, Johann
    Huang, Xing
    von Berlepsch, Hus
    Koksch, Beate
    Bowers, Michael T.
    von Helden, Gert
    Pagel, Kevin
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (01) : 244 - 249