Integration of Physiological, Transcriptomic, and Metabolomic Analyses Reveal Molecular Mechanisms of Salt Stress in Maclura tricuspidata

被引:4
|
作者
Sui, Dezong [1 ]
Wang, Baosong [1 ]
El-Kassaby, Yousry A. [2 ]
Wang, Lei [1 ]
机构
[1] Jiangsu Acad Forestry, Nanjing 211153, Peoples R China
[2] Univ British Columbia, Fac Forestry, Dept Forest & Conservat Sci, Vancouver, BC V6T 1Z4, Canada
来源
PLANTS-BASEL | 2024年 / 13卷 / 03期
关键词
Maclura tricuspidate; resistance; salt adaptation; multi-omics; PLANT-GROWTH; RNA-SEQ; RICE; TOLERANCE; ETHYLENE; BIOSYNTHESIS; SENSITIVITY; RESPONSES; DEFENSE; FAMILY;
D O I
10.3390/plants13030397
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Salt stress is a universal abiotic stress that severely affects plant growth and development. Understanding the mechanisms of Maclura tricuspidate's adaptation to salt stress is crucial for developing salt-tolerant plant varieties. This article discusses the integration of physiology, transcriptome, and metabolome to investigate the mechanism of salt adaptation in M. tricuspidata under salt stress conditions. Overall, the antioxidant enzyme system (SOD and POD) of M. tricuspidata exhibited higher activities compared with the control, while the content of soluble sugar and concentrations of chlorophyll a and b were maintained during salt stress. KEGG analysis revealed that deferentially expressed genes were primarily involved in plant hormone signal transduction, phenylpropanoid and flavonoid biosynthesis, alkaloids, and MAPK signaling pathways. Differential metabolites were enriched in amino acid metabolism, the biosynthesis of plant hormones, butanoate, and 2-oxocarboxylic acid metabolism. Interestingly, glycine, serine, and threonine metabolism were found to be important both in the metabolome and transcriptome-metabolome correlation analyses, suggesting their essential role in enhancing the salt tolerance of M. tricuspidata. Collectively, our study not only revealed the molecular mechanism of salt tolerance in M. tricuspidata, but also provided a new perspective for future salt-tolerant breeding and improvement in salt land for this species.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin
    Shi, Haitao
    Jiang, Chuan
    Ye, Tiantian
    Tan, Dun-Xian
    Reiter, Russel J.
    Zhang, Heng
    Liu, Renyi
    Chan, Zhulong
    JOURNAL OF EXPERIMENTAL BOTANY, 2015, 66 (03) : 681 - 694
  • [22] Transcriptomic and Metabolomic Analyses Reveal Molecular Regulatory Networks for Pigmentation Deposition in Sheep
    Zhang, Mancheng
    Xu, Xiaoli
    Chen, Yuan
    Wei, Chengqi
    Zhan, Siyuan
    Cao, Jiaxue
    Guo, Jiazhong
    Dai, Dinghui
    Wang, Linjie
    Zhong, Tao
    Zhang, Hongping
    Li, Li
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (15)
  • [23] Physiological, transcriptomic and metabolomic analyses reveal that exogenous arginine alleviate the response of Sorghum bicolor L. to cadmium stress
    Ye, Lvlan
    Yu, Junxing
    Zhang, Xingyu
    Yu, Feng
    Zeng, Tuo
    Gu, Lei
    Zhu, Bin
    Wang, Hongcheng
    Du, Xuye
    Industrial Crops and Products, 2025, 229
  • [24] Lipid Metabolomic and Transcriptomic Analyses Reveal That Phosphatidylcholine Enhanced the Resistance of Peach Seedlings to Salt Stress through Phosphatidic Acid
    Sun, Maoxiang
    Liu, Xiaolong
    Zhang, Binbin
    Yu, Wen
    Xiao, Yuansong
    Peng, Futian
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2023, 71 (23) : 8846 - 8858
  • [25] Physiological and transcriptomic analyses reveal the regulatory mechanisms of Anoectochilus roxburghii in response to high-temperature stress
    Zhang, Linghui
    Yang, Heyue
    Zheng, Mengxia
    Zhou, Guo
    Yang, Yuesheng
    Liu, Siwen
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [26] Integrative metabolomic and transcriptomic analyses reveal the mechanisms of Tibetan hulless barley grain coloration
    Xu, Congping
    Abbas, Hafiz Muhammad Khalid
    Zhan, Chuansong
    Huang, Yuxiao
    Huang, Sishu
    Yang, Haizhen
    Wang, Yulin
    Yuan, Hongjun
    Luo, Jie
    Zeng, Xingquan
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [27] Physiological, transcriptomic, and metabolomic analyses reveal zinc oxide nanoparticles modulate plant growth in tomato
    Sun, Liangliang
    Wang, Yibo
    Wang, Ruling
    Wang, Ruting
    Zhang, Ping
    Ju, Qiong
    Xu, Jin
    ENVIRONMENTAL SCIENCE-NANO, 2020, 7 (11) : 3587 - 3604
  • [28] Comparative physiological, biochemical, metabolomic, and transcriptomic analyses reveal the formation mechanism of heartwood for Acacia melanoxylon
    Zhang, Ruping
    Zhang, Zhiwei
    Yan, Caizhen
    Chen, Zhaoli
    Li, Xiangyang
    Zeng, Bingshan
    Hu, Bing
    BMC PLANT BIOLOGY, 2024, 24 (01)
  • [29] Integration of Physiological, Transcriptomic and Metabolomic Reveals Molecular Mechanism of Paraisaria dubia Response to Zn2+ Stress
    Wang, Yue
    Tong, Ling-Ling
    Yuan, Li
    Liu, Meng-Zhen
    Du, Yuan-Hang
    Yang, Lin-Hui
    Ren, Bo
    Guo, Dong-Sheng
    JOURNAL OF FUNGI, 2023, 9 (07)
  • [30] Integrated metabolomic and transcriptomic analyses reveal the roles of alanine, aspartate and glutamate metabolism and glutathione metabolism in response to salt stress in tomato
    Liu, Yue
    Zheng, Jinhui
    Ge, Lianjing
    Tang, Huimeng
    Hu, Jinxiang
    Li, Xiuming
    Wang, Xiaoyun
    Zhang, Yan
    Shi, Qinghua
    SCIENTIA HORTICULTURAE, 2024, 328